用户名: 密码: 验证码:
沸石咪唑酯骨架-67高效催化L-丙交酯的开环聚合反应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Zeolitic Imidazolate Framework-67 Efficiently Catalyzes the Ring-Opening Polymerization of L-Lactide
  • 作者:朱晨阳 ; 罗志雄 ; 陈宬 ; Chaemchuen ; Somboon ; Verpoort ; Francis
  • 英文作者:ZHU Chenyang;LUO Zhixiong;CHEN Cheng;Chaemchuen Somboon;Verpoort Francis;School of Materials Science and Engineering,Wuhan University of Technology;State Key Laboratory of Materials Synthesis and Processing,Wuhan University of Technology;
  • 关键词:开环聚合反应 ; 聚乳酸 ; 沸石咪唑酯骨架-67 ; 非均相催化
  • 英文关键词:ring-opening polymerization;;poly(lactic acid);;zeolitic imidazolate framework-67;;heterogeneous catalysis
  • 中文刊名:YYHX
  • 英文刊名:Chinese Journal of Applied Chemistry
  • 机构:武汉理工大学材料科学与工程学院;武汉理工大学材料复合新技术国家重点实验室;
  • 出版日期:2019-04-10
  • 出版单位:应用化学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(21850410449)资助项目~~
  • 语种:中文;
  • 页:YYHX201904005
  • 页数:9
  • CN:04
  • ISSN:22-1128/O6
  • 分类号:55-63
摘要
为了探究沸石咪唑酯骨架材料(Zeolitic Imidazolate Frameworks,ZIFs)结构中的金属单元对其催化活性的影响,我们采用室温法合成了ZIF-8、Zn/Co-ZIF和ZIF-67,并用其催化L-丙交酯的本体开环聚合反应。在相同的反应条件下,ZIF-67具有最高的催化活性。与2-甲基咪唑(配体)作为催化剂相比,ZIF-67催化得到的聚乳酸具有高度全同立构结构。此外,基质辅助激光解吸-飞行时间(MALDI-TOF)质谱表明,ZIF-67催化得到的聚乳酸主要为线状结构。经过3次循环反应后,ZIF-67的催化活性没有明显降低。
        To explore the metal effecting in structure of zeolitic imidazolate frameworks( ZIFs) influenced to its catalytic activity,we have synthesized ZIF-8,Zn/Co-ZIF and ZIF-67 by room temperature method and applied them as catalysts for the bulk ring-opening polymerization of L-lactide. Under the same reaction condition,ZIF-67 shows the highest catalytic activity. Compared to 2-methylimidazolate( linker) as a catalyst under the same reaction condition,the poly( lactic acid) obtained with ZIF-67 has highly isotactic structure.In addition,the matrix assisted laser desorption ionization-time of flight( MALDI-TOF) mass spectrum indicate that the poly( lactic acid) obtained with ZIF-67 has an almost linear structure. ZIF-67 can be reused for three times without significantly loss of catalytic activity.
引文
[1]Gupta A P,Kumar V. New Emerging Trends in Synthetic Biodegradable Polymers-Polylactide:A Critique[J]. Eur Polym J,2007,43(10):4053-4074.
    [2]Lim L T,Auras R,Rubino M. Processing Technologies for Poly(Lactic Acid)[J]. Prog Polym Sci,2008,33(8):820-852.
    [3]Van Wouwe P,Dusselier M,Vanleeuw E,et al. Lactide Synthesis and Chirality Control for Polylactic Acid Production[J].Chem Sus Chem,2016,9(9):907-921.
    [4]Terrade F G,Van Krieken J,Verkuijl B J V,et al. Catalytic Cracking of Lactide and Poly(Lactic acid)to Acrylic Acid at Low Temperatures[J]. Chem Sus Chem,2017,10(9):1904-1908.
    [5] Dechy-Cabaret O,Martin-Vaca B,Bourissou D. Controlled Ring-Opening Polymerization of Lactide and Glycolide[J].Chem Rev,2004,104(12):6147-6176.
    [6]Kricheldorf H R. Synthesis and Application of Polylactide[J]. Chemosphere,2001,43(1):49-54.
    [7]Platel R H,Hodgson L M,Williams C K. Biocompatible Initiators for Lactide Polymerization[J]. Polym Rev,2008,48(1):11-63.
    [8]Tschan M J L,Brule E,Haquette P,et al. Synthesis of Biodegradable Polymer from Renewable Resource[J]. Polym Chem,2012,3(4):836-851.
    [9]Achmad F,Yamanishi K,Liu Z Y,et al. The Effect of the Impurities in Refinery Process from Fermentation Broth on Lactic Acid Polymerization[J]. J Chem Eng Jpn,2009,42(8):632-635.
    [10]Abdel-Fattah T M,Pinnavaia T J. Tin-Substituted Mesoporous Silica Molecular Sieve(Sn-HMS):Synthesis and Properties as a Heterogeneous Catalyst for Lactide Ring-Opening Polymerization[J]. Chem Commun,1996,(5):665-666.
    [11]Yu K,Jones C W. Elucidating the Role of Silica Surfaces in the Ring-Opening Polymerization of Lactide:Catalytic Behavior of Silica-Immobilized Zincβ-Diiminate Complexes[J]. J Catal,2004,222(2):558-564.
    [12]Jones M D,Davidson M G,Keir C G,et al. Heterogeneous Catalysts for the Controlled Ring-Opening Polymerization of rac-Lactide and Homogeneous Silsesquioxane Model Complexes[J]. Dalton Trans,2008,(28):3655-3657.
    [13]Kim E,Shin E W,Yoo I K,et al. Characteristics of Heterogeneous Titanium Alkoxide Catalysts for Ring-Opening Polymerization of Lactide to Produce Polylactide[J]. J Mol Catal A:Chem,2009,298(1/2):36-39.
    [14]Jones M D,Davidson M G,Keir C G,et al. Zinc(Ⅱ)Homogeneous and Heterogeneous Species and Their Application for the Ring-Opening Polymerization of rac-Lactide[J]. Eur J Inorg Chem,2009,(5):635-642.
    [15]Jones M D,Keir C G,Johnson A L,et al. Crystallographic Characterization of Novel Zn(Ⅱ)Silsesquioxane Complexes and Their Application as Initiators for the Production of Polylactide[J]. Polyhedron,2010,29(1):312-316.
    [16]Di Iulio C,Jones M D,Mahon M F,et al. Zinc(Ⅱ)Silsesquioxane Complexes and Their Application for the Ring-Opening Polymerization of rac-Lactide[J]. Inorg Chem,2010,49(22):10232-10234.
    [17]Di Iulio C,Jones M D,Mahon M F. Synthesis of Al(Ⅲ)Silsesquioxane Complexes and Their Exploitation for the Ring Opening Polymerization of rac-Lactide[J]. J Organomet Chem,2012,718:96-100.
    [18]Wanna N,Kraithong T,Khamnaen T,et al. Aluminum-and Calcium-Incorporated MCM-41-Type Silica as Supports for the Immobilization of Titanium(Ⅳ)Isopropoxide in Ring-Opening Polymerization of L-Lactide andε-Caprolactone[J]. Catal Commun,2014,45:118-123.
    [19]Lee E J,Lee K M,Jang J,et al. Characteristics of Silica-Supported Tin(Ⅱ)Methoxide Catalysts for Ring-Opening Polymerization(ROP)of L-Lactide[J]. J Mol Catal A:Chem,2014,385:68-72.
    [20]Chaemchuen S,Kabir N A,Zhou K,et al. Metal-Organic Frameworks for Upgrading Biogas via CO2Adsorption to Biogas Green Energy[J]. Chem Soc Rev,2013,42(24):9304-9332.
    [21]XIAO Fan,CUI Yuanjing,QIAN Guodong. Metal-Organic Frameworks for Fluorescence Detection Applications[J]. Chinese J Appl Chem,2018,35(9):1113-1125(in Chinese).肖帆,崔元靖,钱国栋.金属-有机框架材料的荧光探测应用进展[J].应用化学,2018,35(9):1113-1125.
    [22]Chaemchuen S,Luo Z,Zhou K,et al. Defect Formation in Metal-Organic Frameworks Initiated by the Crystal Growth-Rate and Effect on Catalytic Performance[J]. J Catal,2017,354:84-91.
    [23]Chughtai A H,Ahmad N,Younns H A,et al. Metal-Organic Frameworks:Versatile Heterogeneous Catalysts for Efficient Catalytic Organic Transformations[J]. Chem Soc Rev,2015,44(19):6804-6849.
    [24]Chuck C J,Davidson M G,Jones M D,et al. Air-Stable Titanium Alkoxide Based Metal-Organic Frameworks as an Initiator for Ring-Opening Polymerization of Cyclic Esters[J]. Inorg Chem,2006,45(17):6595-6597.
    [25]Wu C Y,Raja D S,Yang C C,et al. Evaluation of Structural Transformation in 2D Metal-Organic Frameworks Based on a4,4'-Sulfonyldibenzoate Linker:Microwave-assisted Solvothermal Synthesis, Characterization and Applications[J].Cryst Eng Comm,2014,16(39):9308-9319.
    [26]Luo Z,Chaemchuen S,Zhou K,et al. Influence of Lactic Acid on the Catalytic Performance of MDABCO for Ring-Opening Polymerization of L-Lactide[J]. Appl Catal A:Gen,2017,546:15-21.
    [27]Luo Z,Chaemchuen S,Zhou K,et al. Ring-Opening Polymerization of L-Lactide to Cyclic Poly(Lactide)by Zeolitic Imidazole Framework ZIF-8 Catalyst[J]. Chem Sus Chem,2017,10(21):4135-4139.
    [28]Phan A,Doonan C J,Uribe-Romo F J,et al. Synthesis,Structure,and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks[J]. Acc Chem Res,2010,43(1):58-67.
    [29]Chen B,Yang Z,Zhu Y,et al. Zeolitic Imidazolate Framework Materials:Recent Progress in Synthesis and Applications[J]. J Mater Chem A,2004,2(40):16811-16831.
    [30]Chizallet C,Lazare S,Bazer-Bachi D,et al. Catalysis of Transesterification by a Nonfunctionalized Metal-Organic Framework:Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and Ab Initio Calculations[J]. J Am Chem Soc,2010,132(35):12365-12377.
    [31]Tran U P N,Le K K A,Phan N T S. Expanding Applications of Metal-Organic Frameworks:Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction[J]. ACS Catal,2011,1(2):120-127.
    [32]Kalidindi S B,Esken D,Fischer R A. B-N Chemistry@ZIF-8:Dehydrocoupling of Dimethylamine Borane at Room Temperature by Size-Confinement Effects[J]. Chem Eur J,2011,17(24):6594-6597.
    [33]Mousavi B,Chaemchuen S,Moosavi B,et al. Zeolitic Imidazole Framework-67 as an Efficient Heterogeneous Catalyst for the Conversion of CO2to Cyclic Carbonates[J]. New J Chem,2016,40(6):5170-5176.
    [34]Lin K Y A,Chang H A. Zeolitic Imidazole Framework-67(ZIF-67)as a Heterogeneous Catalyst to Activate Peroxymonosulfate for Degradation of Rhodamine B in Water[J]. J Taiwan Inst Chem Eng,2015,53:40-45.
    [35]Coulembier O,Meyer F,Dubois P. Controlled Room Temperature ROP of L-Lactide by ICl3:A Simple Halogen-Bonding Catalyst[J]. Polym Chem,2010,1(4):434-437.
    [36]Pietrangelo A,Hillmyer M A,Tolman W B. Stereoselective and Controlled Polymerization of DL-Lactide Using Indium(Ⅲ)Trichloride[J]. Chem Commun,2009,(19):2736-2737.
    [37]Pietrangelo A,Knight S C,Gupta A K,et al. Mechanistic Study of the Stereoselective Polymerization of D,L-Lactide Using Indium(Ⅲ)Halides[J]. J Am Chem Soc,2010,132(33):11649-11657.
    [38]Kricheldorf H R,Lomadze N,Schwarz G. Cyclic Polylactides by Imidazole-Catalyzed Polymerization of L-Lactide[J].Macromolecules,2008,41(21):7812-7816.
    [39]Blakey I,Yu A,Howdle S M,et al. Controlled Polymerization of Lactide Using an Organo-Catalyst in Supercritical Carbon Dioxide[J]. Green Chem,2011,13(8):2032-2037.
    [40]Coulembier O,Josse T,Guillerm B,et al. An Imidazole-Based Organocatalyst Designed for Bulk Polymerization of Lactide Isomers:Inspiration from Nature[J]. Chem Commun,2012,48(95):11695-11697.
    [41]Nederberg F,Connor E F,Moeller M,et al. New Paradigms for Organic Catalysts:The First Organocatalytic Living Polymerization[J]. Angew Chem Int Ed,2001,40(14):2712-2715.
    [42]Chizallet C,Bats N. External Surface of Zeolite Imidazolate Frameworks Viewed Ab Initio:Multifunctionality at the Organic-Inorganic Interface[J]. J Phys Chem Lett,2010,1(1):349-353.
    [43]Kuruppathparambil R R,Babu R,Jeong H M,et al. A Solid Solution Zeolitic Imidazolate Framework as a Room Temperature Efficient Catalyst for the Chemical Fixation of CO2[J]. Green Chem,2016,18(23):6349-6356.
    [44]Zhou K,Mousavi B,Luo Z,et al. Characterization and Properties of Zn/Co Zeolitic Imidazolate Frameworks vs. ZIF-8 and ZIF-67[J]. J Mater Chem A,2017,5(3):952-957.
    [45]Chen Y Z,Wang C,Wu Z Y,et al. From Bimetallic Metal-Organic Framework to Porous Carbon:High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis[J]. Adv Mater,2015,27(34):5010-5016.
    [46]Kowalski A,Duda A,Penczek S. Polymerization of L,L-Lactide Initiated by Aluminum Isopropoxide Trimer or Tetramer[J]. Macromolecules,1998,31(7):2114-2122.
    [47]Katiyar V,Nanavati H. Ring-Opening Polymerization of L-Lactide Using N-Heterocyclic Molecules:Mechanistic,Kinetics and DFT Studies[J]. Polym Chem,2010,1(9):1491-1500.
    [48]Frediani M,Semeril D,Mariotti A,et al. Ring Opening Polymerization of Lactide Under Solvent-Free Conditions Catalyzed by a Chlorotitanium Calix[4]arene Complex[J]. Macromol Rapid Commun,2008,29(18):1554-1560.
    [49]Zhang M,Ni X,Shen Z. Synthesis of Bimetallic Bis(phenolate)N-Heterocyclic Carbene Lanthanide Complexes and Their Applications in the Ring-Opening Polymerization of L-Lactide[J]. Organometallics,2014,33(23):6861-6867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700