用户名: 密码: 验证码:
新型Ag-Ti_2AlN电接触材料的电弧侵蚀行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Arc Erosion Behavior of a New Type of Ag-Ti_2AlN Electrical Contact Material
  • 作者:贾海龙 ; 朱刚 ; 谢明 ; 李爱坤 ; 刘满门 ; 吴地 ; 吴先月
  • 英文作者:JIA Hai-long;ZHU Gang;XIE Ming;LI Ai-kun;LIU Man-men;WU Di;WU Xian-yue;State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals,Kunming Institute of precious Metals;School of Materials Science and Engineering,Southwest Forestry University;
  • 关键词:复合材料 ; Ag基电接触材料 ; Ti_2AlN增强相 ; 电导率 ; 电弧侵蚀
  • 英文关键词:composite;;Ag-matrix electrical contact material;;Ti_2AlN reinforcement;;electrical conductivity;;arc erosion
  • 中文刊名:XYJY
  • 英文刊名:Rare Metals and Cemented Carbides
  • 机构:昆明贵金属研究所稀贵金属综合利用新材料国家重点实验室;西南林业大学材料科学与工程学院;
  • 出版日期:2019-02-20
  • 出版单位:稀有金属与硬质合金
  • 年:2019
  • 期:v.47;No.230
  • 基金:云南省科技厅应用基础研究面上项目(2017FB144)
  • 语种:中文;
  • 页:XYJY201901008
  • 页数:6
  • CN:01
  • ISSN:43-1109/TF
  • 分类号:30-34+73
摘要
采用高能球磨和粉末冶金法制备出Ag-Ti_2AlN新型电接触材料,对该触头材料的电弧侵蚀行为及其机理进行了研究,并通过扫描电镜分析电弧侵蚀后触点的表面微观结构。结果表明,Ti_2AlN增强相在改善Ag基电接触材料的燃弧时间、燃弧能量和抗熔焊性能方面具有明显优势,Ag-Ti_2AlN触头在70 000次的通断循环测试中,其平均燃弧时间为5.61 ms,平均燃弧能量为59.8 mJ,平均熔焊力仅有15 cN。在气相电弧作用下,电触头阴极形成蚀坑中心如熔岩状和"汗滴"状微观组织,Ti_2AlN增强相颗粒通过Ti、Al熔入Ag熔池,来改善熔体的黏度,从而增强抗电弧侵蚀性能。另外,由于Al元素存在优先氧化机制,形成的Al_2O_3在汽化时吸收大量的热量,从而降低阳极增重,降低阳极凸起的高度,有效提高电接触材料的可靠性。
        A new type of Ag-Ti_2AlN electrical contact materials were prepared by high energy ball milling and powder metallurgy.The arc erosion behavior and mechanism of the contact materials were studied.The surface microstructure of the contact after arc erosion was analyzed by scanning electron microscopy.The results show that Ti_2AlN reinforcement has obvious advantages in improving the arc time,arc energy and welding resistance of Ag-matrix electrical contact materials.The average arc time,arc energy and welding strength of Ag-Ti_2AlN contacts are 5.61 ms,59.8 mJ and 15 cN respectively in 70 000 on-off cycle tests.Under the action of vapor arc,the corrosion pit centers such as lava and sweat droplets are formed in the cathode of electric contacts.The Ti_2AlN reinforcement particles are fused into the silver melting pool by the diffusion of titanium and aluminum,which can improve the viscosity of the melt,and then enhance the arc erosion resistance.In addition,because of the preferential oxidation mechanism of Al element,the formed Al_2O_3 absorbs a lot of heat during vaporization,which reduces the mass gain of the anode and the height of the anode bulge,and effectively improves the reliability of electrical contact materials.
引文
[1] WU C P,YI D Q,LI J,et al.Investigation on microstructure and performance of Ag/ZnO contact material[J].Journal of Alloys & Compounds,2008,457(1):565-570.
    [2] KANG Y C,PARK S B.Preparation of zinc oxide-dispersed silver particles by spray pyrolysis of colloidal solution[J].Materials Letters,1999,40(3):129-133.
    [3] JOSHIA P B,KRISHMAM P S,PATE R H,et al.Effect of lithium addition on density and oxide-phase morphology of Ag-ZnO electrical contact materials[J].Materials Letters,1997,33(3-4):137-141.
    [4] XU C H,Yi D Q,WU C P,et al.Microstructures and properties of silver-based contact material fabricated by hot extrusion of internal oxidized Ag-Sn-Sb alloy powders[J].Materials Science & Engineering A,2012,538:202-209.
    [5] YANG T Z,DU Z J,GU Y Y,et al.Preparation of flake Ag-SnO2 composite powders by hydrothermal method[J].Transactions of Nonferrous Metals Society of China,2007,17(2):434-438.
    [6] SHAKERIAN F,PARVIN N,AZADMEHR A,et al.Synthesis of silver tin oxide nanocomposite powders via chemical coprecipitation method[J].Comptes Rendus Chimie,2012,15(7):633-638.
    [7] SUN Z M.Progress in research and development on MAX phases:A family of layered ternary compounds[J].International Materials Reviews,2011,56(3):143-166.
    [8] ZHANG Y ,SUN Z M ,ZHOU Y C.Cu/Ti3SiC2 composite:A new electro-friction material[J].Materials Research Innovations,1999,3(2):80-84.
    [9] ZHANG Y,ZHOU Y C.Mechanical properties of Ti3-SiC2 dispersion strengthened copper[J].Zeitschrift Fur Metallkunde,2000,91:585-588.
    [10] PENG L M.Fabrication and properties of Ti3AlC2 particulates reinforced copper composites[J].Scripta Materialia,2007,56(9):729-732.
    [11] WU J Y,ZHOU Y C,YAN C K.Mechanical and electrical properties of Ti2SnC dispersion-strengthened copper[J].Zeitschrift Fur Metallkunde,2005,96:847-852.
    [12] WU J Y,ZHOU Y C,WANG J Y.Tribological behavior of Ti2SnC particulate reinforced copper matrix composites[J].Materials Science & Engineering A,2006,422(1):266-271.
    [13] WU J Y,ZHOU Y C,YAN C K,et al.Interfacial reaction between Cu and Ti2SnC during processing of Cu-Ti2SnC composite[J].Zeitschrift Fur Metallkunde,2005,96:1 314-1 320.
    [14] ZHANG J,ZHOU Y C.Microstructure,mechanical,and electrical properties of Cu-Ti3AlC2 and in situ Cu-TiCx composites[J].Journal of Materials Research,2008,23(4):924-932.
    [15] 闰程科,周延春.Ti2SnC颗粒增强铜基复合材料的力学性能[J].金属学报,2003,39(1):99-103.
    [16] ZHAGN J,HE L F,ZHOU Y C.Highly conductive and strengthened copper matrix composite reinforced by Zr2Al3C4 particulates[J].Scripta Materialia,2009,60(11):976-979.
    [17] LI H ,WANG X ,LIU Y ,et al.Effect of strengthening phase on material transfer behavior of Ag-based contact materials under different voltages[J].Vacuum,2017,135:55-65.
    [18] ZHAGN L G,SHEN T,SHEN Q H,et al.Anti-arc erosion properties of Ag-La2Sn2O7/SnO2 contacts[J].Rare Metal Materials and Engineering,2016,45(7):1 664-1 668.
    [19] FIELD J D ,TONEY M F ,AHMAD M I ,et al.The formation mechanism for printed silver-contacts for silicon solar cells[J].Nature Communications,2016,7:11 143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700