用户名: 密码: 验证码:
逆变侧交流系统不对称故障引发HVDC系统连续换相失败的机理及抑制策略研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Mechanism and Control Strategy of Continuous Commutation Failures in HVDC System Caused by Asymmetrical Fault in Inverter-Side AC System
  • 作者:曾亮 ; 李永丽 ; 张云柯 ; 孙广宇 ; 金钊 ; 杨子荷 ; 赵学明
  • 英文作者:ZENG Liang;LI Yongli;ZHANG Yunke;SUN Guangyu;SONG Jinzhao;YANG Zihe;ZHAO Xueming;Key Laboratory of Smart Grid of Ministry of Education (Tianjin University);
  • 关键词:高压直流输电 ; 连续换相失败 ; 触发角 ; 周期性波动 ; 不对称故障 ; 抑制策略
  • 英文关键词:HVDC;;continuous commutation failures;;firing angle;;periodic fluctuation;;asymmetrical fault;;control strategy
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:智能电网教育部重点实验室(天津大学);
  • 出版日期:2018-11-21 11:21
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.622
  • 基金:国家重点研发计划项目(2016YFB0900603);; 国家电网公司科技项目(52094017000W);; 国家自然科学基金项目(51577128)~~
  • 语种:中文;
  • 页:ZGDC201911006
  • 页数:10
  • CN:11
  • ISSN:11-2107/TM
  • 分类号:60-69
摘要
高压直流系统逆变侧交流系统发生不对称故障后,若故障不能及时清除,极易引起直流系统发生连续换相失败,影响交直流混联电网的安全稳定运行。逆变侧发生不对称故障后,换流阀的实际超前触发角在换相失败后的系统恢复阶段会受换相电压不对称、直流控制调节共同影响。对实际超前触发角进行推导后得出,不对称故障后实际超前触发角具有周期性波动的特征,极易在直流系统恢复阶段引发连续换相失败。因此,根据滞环控制理论,提出一种通过减小实际超前触发角波动范围来抑制连续换相失败的控制策略。基于CICRE HVDC标准模型,在PSCAD/EMTDC上对逆变侧不对称故障进行了仿真。仿真结果证明,在换相失败后的系统恢复阶段,实际超前触发角的周期性波动是引起连续换相失败的重要原因,所提出的连续换相失败抑制策略可以减小实际触发角波动范围,并有效抑制连续换相失败。
        When an asymmetric fault occurs on the inverter side, the leading firing angle of the inverter will be affected by two factors: the asymmetrical commutation voltage and the DC control adjustment. The commutation voltage of each valve is calculated using the symmetrical component method, and the results show that the asymmetry of the commutating voltage will cause a periodic fluctuation of the leading firing angle. In the meanwhile, it is found that the firing angle order contains second harmonic components after analyzing the HVDC control system output characteristics. Combining the effects of two factors, the leading firing angle exhibits periodic fluctuation characteristics, which can easily cause continuous commutation failure in the recovery process of DC system.According to the hysteresis control theory, a control strategy to suppress continuous commutation failure by reducing the leading firing angle fluctuation range was proposed. Simulation experiments were conducted in PSCAD/EMTDC to verify the proposed mechanism and effectiveness of the control strategy.The results confirm that during the recovery process after a commutation failure, the periodic fluctuation of leading firing angle is the primary cause of continuous commutation failure in the HVDC system, and the proposed control strategy has the ability to mitigate the continuous commutation failure under single-phase ground fault conditions.
引文
[1]赵畹君.高压直流输电工程技术[M].2版.北京:中国电力出版社,2011:124.Zhao Wanjun.High voltage direct current project technology[M].2nd Ed.Beijing:China Electric Power Press,2011:124(in Chinese).
    [2]黄玉东.高压直流输电换相失败的研究[D].北京:华北电力大学(北京),2006.Huang Yudong.Study on the communication failure in HVDC transmission lines[D].Beijing:North China Electric Power University,2006(in Chinese).
    [3]荆勇,欧开健,任震.交流单相故障对高压直流输电换相失败的影响[J].高电压技术,2004,30(3):60-62.Jing Yong,Ou Kaijian,Ren Zhen.Analysis on influence of AC single phase faults on HVDC commutation failure[J].High Voltage Engineering,2004,30(3):60-62(in Chinese).
    [4]许朋见,黄金海,许静静,等.宾金特高压直流换相失败保护的研究[J].电力系统保护与控制,2017,45(2):140-146.Xu Pengjian,Huang Jinhai,Xu Jingjing,et al.Study of Bin-Jin UHVDC project commutation failures protection[J].Power System Protection and Control,2017,45(2):140-146(in Chinese).
    [5]李新年,易俊,李柏青,等.直流输电系统换相失败仿真分析及运行情况统计[J].电网技术,2012,36(6):266-271.Li Xinnian,Yi Jun,Li Baiqing,et al.Simulation analysis and operation statistics of commutation failure in HVDCtransmission system[J].Power System Technology,2012,36(6):266-271(in Chinese).
    [6]王晶,梁志峰,江木,等.多馈入直流同时换相失败案例分析及仿真计算[J].电力系统自动化,2015,39(4):141-146.Wang Jing,Liang Zhifeng,Jiang Mu,et al.Case analysis and simulation of commutation failure in multi-infeed HVDC transmission systems[J].Automation of Electric Power Systems,2015,39(4):141-146(in Chinese).
    [7]朱韬析,宁武军,欧开健.直流输电系统换相失败探讨[J].电力系统保护与控制,2008,36(23):116-120.Zhu Taoxi,Ning Wujun,Ou Kaijian.Discussion on commutation failure in HVDC transmission system[J].Power System Protection and Control,2008,36(23):116-120(in Chinese).
    [8]李新年,陈树勇,李涛,等.特高压主变充电导致直流周期性换相失败的原因[J].电网技术,2014,38(10):2671-2679.Li Xinnian,Chen Shuyong,Li Tao,et al.Research on the periodic commutation failure by 1000kV UHVtransformer energizing for Lin Feng HVDC project[J].Power System Technology,2014,38(10):2671-2679(in Chinese).
    [9]刘济豪,郭春义,刘文静,等.基于改进换相面积的直流输电换相失败判别方法[J].华北电力大学学报,2014,41(1):15-21.Liu Jihao,Guo Chunyi,Liu Wenjing,et al.Commutation failure detective method based on improved commutation area in HVDC[J].Journal of North China Electric Power University,2014,41(1):15-21(in Chinese).
    [10]陈树勇,李新年,余军,等.基于正余弦分量检测的高压直流换相失败预防方法[J].中国电机工程学报,2005,25(14):1-6.Chen Shuyong,Li Xinnian,Yu Jun,et al.Method based on the Sin-Cos components detection mitigates commutation failure in HVDC[J].Proceedings of the CSEE,2005,25(14):1-6(in Chinese).
    [11]刘羽超,郭春义,许韦华,等.一种降低直流输电换相失败概率的控制方法[J].电网技术,2015,39(1):76-82.Liu Yuchao,Guo Chunyi,Xu Weihua,et al.A control method to reduce commutation failure probability in HVDC power transmission[J].Power System Technology,2015,39(1):76-82(in Chinese).
    [12]Wei Zhinong,Yuan Yang,Lei Xiao,et al.Direct-Current predictive control strategy for inhibiting commutation failure in HVDC converter[J].IEEE Transactions on Power Systems,2014,29(5):2409-2417.
    [13]Zhang Lidong,Dofnas L.A novel method to mitigate commutation failures in HVDC systems[C]//Proceedings of 2002 International Conference on Power System Technology.Kunming,China:IEEE,2002.
    [14]郭春义,李春华,刘羽超,等.一种抑制传统直流输电连续换相失败的虚拟电阻电流限制控制方法[J].中国电机工程学报,2016,36(18):4930-4937.Guo Chunyi,Li Chunhua,Liu Yuchao,et al.A DC current limitation control method based on virtual-resistance to mitigate the continuous commutation failure for conventional HVDC[J].Proceedings of the CSEE,2016,36(18):4930-4937(in Chinese).
    [15]傅闯,饶宏,黎小林.交直流混合电网中直流50Hz和100Hz保护研究[J].电力系统自动化,2008,32(12):57-60,103.Fu Chuang,Rao Hong,Li Xiaolin.HVDC 50Hz and100Hz protection of AC/DC hybrid transmission system[J].Automation of Electric Power System,2008,32(12):57-60,103(in Chinese).
    [16]Szechtman M,Wess T,Thio C V.A benchmark model for HVDC system studies[C]//Proceedings of International Conference on AC and DC Power Transmission.London:IEEE,1991:374-378.
    [17]索南加乐,张健康,焦在滨,等.交直流混联电网交流系统故障特征分析[J].高电压技术,2010,36(6):1461-1467.Suonan Jiale,Zhang Jiankang,Jiao Zaibin,et al.AC fault characteristic analysis of AC-DC hybrid transmission grid[J].High Voltage Engineering,2010,36(6):1461-1467(in Chinese).
    [18]王钢,李志铿,李海锋,等.HVDC换流器等值谐波阻抗的计算方法[J].中国电机工程学报,2010,30(19):64-68.Wang Gang,Li Zhikeng,Li Haifeng,et al.Calculation method of harmonic equivalent impedances of HVDCconverter[J].Proceedings of the CSEE,2010,30(19):64-68(in Chinese).
    [19]Malesani L,Rossetto L,Sonaglioni L,el al.Digital,additive hysteresis current control with clocked commutations and wide operating range[C]//Proceedings of 1994 EEE Industrial Application Society Annual Meeting.Denver:IEEE,1994:1115-1121.
    [20]洪峰,单任仲,王慧贞,等.一种变环宽准恒频电流滞环控制方法[J].电工技术学报,2009,24(1):115-119.Hong Feng,Shan Renzhong,Wang Huizhen,et al.Avaried hysteresis-band current controller with fixed switching frequency[J].Transactions of China Electrotechnical Society,2009,24(1):115-119(in Chinese).
    [21]黄建明,吴春华,许富强.基于相序解耦谐振控制器的基波正序电压相位检测方法[J].电网技术,2013,37(3):667-672.Huang Jianming,Wu Chunhua,Xu Fuqiang.Phase detection of fundamental positive sequence voltage based on sequence-decoupled resonant controller[J].Power System Technology,2013,37(3):667-672(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700