用户名: 密码: 验证码:
Investigation of the performance of a pilot-scale barrel atmospheric plasma system for plasma activation of polymer particles
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of the performance of a pilot-scale barrel atmospheric plasma system for plasma activation of polymer particles
  • 作者:Hisham ; M.Abourayana ; Peter ; J.Dobbyn ; Pat ; Whyte ; Denis ; P.Dowling
  • 英文作者:Hisham M.Abourayana;Peter J.Dobbyn;Pat Whyte;Denis P.Dowling;Surface Engineering Group, School of Mechanical and Materials Engineering, University College Dublin;Irish Micro Mouldings, Inverin, Co.;
  • 英文关键词:Atmospheric pressure plasma;;Barrel plasma reactor;;Polymer particles;;Water contact angle;;X-ray photoelectron spectroscopy;;Injection moulding
  • 中文刊名:NMJM
  • 英文刊名:纳米技术与精密工程(英文版)
  • 机构:Surface Engineering Group, School of Mechanical and Materials Engineering, University College Dublin;Irish Micro Mouldings, Inverin, Co.;
  • 出版日期:2019-03-15
  • 出版单位:Nanotechnology and Precision Engineering
  • 年:2019
  • 期:v.2
  • 基金:support of the Enterprise Ireland Innovation Partnership program;; the SFI funded Ⅰ-Form Advanced Manufacturing Research Centre 16/RC/3872
  • 语种:英文;
  • 页:NMJM201901001
  • 页数:7
  • CN:01
  • ISSN:12-1458/O3
  • 分类号:3-9
摘要
This study reports the development and performance of a pilot-scale barrel atmospheric plasma reactor for the atmospheric plasma activation treatment of polymer particles. The polymer particles treated included acrylonitrile butadiene styrene(ABS) and polypropylene(PP). These particles had diameters in the range of 3–5 mm. The initial studies were carried out using a laboratory-scale barrel reactor designed to treat polymer particle batch sizes of 20 g. A pilot-scale reactor that could treat 500 g particle batch sizes was then developed to facilitate pre-industrial-scale treatments. The effect of operating pulse density modulation(PDM) in the range 10%–100% and plasma treatment time on the level of activation of the treated polymers were then investigated. ABS revealed a larger decrease in water contact angle compared with PP after plasma treatment under the same conditions. The optimal treatment time of ABS(400 g of polymer particles) in the pilot-scale reactor was 15 min. The plasma-activated polymer particles were used to fabricate dog-bone polymer parts through injection molding.Mechanical testing of the resulting dog-bone polymer parts revealed a 10.5% increase in tensile strength compared with those fabricated using non-activated polymer particles.
        This study reports the development and performance of a pilot-scale barrel atmospheric plasma reactor for the atmospheric plasma activation treatment of polymer particles. The polymer particles treated included acrylonitrile butadiene styrene(ABS) and polypropylene(PP). These particles had diameters in the range of 3–5 mm. The initial studies were carried out using a laboratory-scale barrel reactor designed to treat polymer particle batch sizes of 20 g. A pilot-scale reactor that could treat 500 g particle batch sizes was then developed to facilitate pre-industrial-scale treatments. The effect of operating pulse density modulation(PDM) in the range 10%–100% and plasma treatment time on the level of activation of the treated polymers were then investigated. ABS revealed a larger decrease in water contact angle compared with PP after plasma treatment under the same conditions. The optimal treatment time of ABS(400 g of polymer particles) in the pilot-scale reactor was 15 min. The plasma-activated polymer particles were used to fabricate dog-bone polymer parts through injection molding.Mechanical testing of the resulting dog-bone polymer parts revealed a 10.5% increase in tensile strength compared with those fabricated using non-activated polymer particles.
引文
1.Oberbossel G, Güntner A, Kündig L, Roth C, von Rohr PR.Polymer powder treatment in atmospheric pressure plasma circulatingfluidized bed reactor.Plasma Process Polym 2015;12:285-92.https://doi.org/10.1002/ppap.201400124.
    2.Arefi-Khonsari F, Tatoulian M, Bretagnol F, Bouloussa O, Rondelez F.Processing of polymers by plasma technologies.Surf Coatings Technol 2005;200(1–4):14-20.https://doi.org/10.1016/j.surfcoat.2005.02.184.SPEC.ISS.
    3.Abourayana H, Dowling D.Plasma processing for tailoring the surface properties of polymers.In:Aliofkhazraei M(ed); 2015.doi:https://doi.org/10.5772/60927.
    4.Gilliam M, Farhat S, Zand A, Stubbs B, Magyar M, Garner G.Atmospheric plasma surface modification of PMMA and PP micro-particles.Plasma Process Polym 2014;11:1037-43.https://doi.org/10.1002/ppap.201300087.
    5.Hunke H, Soin N, Shah T, Kramer E, Pascual A, Karuna MSL, Siores E.Low-pressure H2,NH3microwave plasma treatment of polytetrafluoroethylene(PTFE)powders:chemical, thermal and wettability analysis.Materials(Basel)2015;8:2258-75.https://doi.org/10.3390/ma8052258.
    6.Morent R, De Geyter N, Leys C.Effects of operating parameters on plasma-induced PET surface treatment.Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 2008;266(12-13):3081-5.https://doi.org/10.1016/j.nimb.2008.03.166.
    7.Put S, Bertels C, Vanhulsel A.Atmospheric pressure plasma treatment of polymeric powders.Surf Coatings Technol 2013;234:76-81.https://doi.org/10.1016/j.surfcoat.2013.02.006.
    8.Arpagaus C, Sonnenfeld A, von Rohr PR.A downer reactor for short-time plasma surface modific ation of polymer powders.Chem Eng Technol 2005;28(1):87-94.https://doi.org/10.1002/ceat.200407045.
    9.Vivien C, Wartelle C, Mutel B, Grimblot J.Surface property modification of a polyethylene powder by couplingfluidized bed and far cold remote nitrogen plasma technologies.Surf Interface Anal 2002;34:575-9.https://doi.org/10.1002/sia.1363.
    10.Patra N, Hladik J, PavlatováM, MilitkyJ, MartinováL.Investigation of plasmainduced thermal, structural and wettability changes on low density polyethylene powder.Polym Degrad Stab 2013;98:1489-94.https://doi.org/10.1016/j.polymdegradstab.2013.04.014.
    11.Fang S, Meng Y, Shen J, Cong J.Surface treatment of polypropylene powders using a plasma reactor with a stirrer.Plasma Sci Technol 2011;13:217-22.https://doi.org/10.1088/1009-0630/13/2/18.
    12.Kim J-W, Kim Y, Choi H.Thermal characteristics of surface-crosslinked high density polyethylene beads as a thermal energy storage material.Korean J Chem Eng2002;19:632-7.https://doi.org/10.1007/BF02699309.
    13.Oberbossel G, Probst C, Giampietro VR, von Rohr PR.Plasma afterglow treatment of polymer powders:process parameters, wettability improvement, and aging effects.Plasma Process Polym 2017;14:1-10.https://doi.org/10.1002/ppap.201600144.
    14.Abdul-Majeed WS, AL-Handhali IM, AL-Yaquobi SH, Al-Riyami KO.Application of novel polymeric surface remediation technique based onflying jet plasma torch.Ind Eng Chem Res 2017;56:11352-8.https://doi.org/10.1021/acs.iecr.7b02729.
    15.Nakajima T, Tanaka K, Inomata T.Development of powder antifoamer by atmospheric pressure glow plasma.Thin Solid Films 2001;386:208-12.https://doi.org/10.1016/S0040-6090(00)01660-6.
    16.Abourayana H, Barry N, Dobbyn P, Dowling D.Comparison between the performance offluidized bed and barrel rectors for the plasma activation of polymer particles.J Miner Met Mater Eng 2015:57–64.
    17.Abourayana H, Milosavljevi?V, Dobbyn P, Cullen P, Dowling D.Investigation of a scalable barrel atmospheric plasma reactor for the treatment of polymer particles.Surf Coatings Technol 2016;308:435-41.https://doi.org/10.1016/j.surfcoat.2016.06.094.
    18.Abourayana H, Milosavljevi?V, Dobbyn P, Dowling D.Evaluation of the effect of plasma treatment frequency on the activation of polymer particles.Plasma Chem Plasma Process 2017;37:1223-35.https://doi.org/10.1007/s11090-017-9810-1.
    19.Donegan M, Milosavljevi?V, Dowling D.Activation of PET using an RF atmospheric plasma system.Plasma Chem Plasma Process 2013;33:941-57.https://doi.org/10.1007/s11090-013-9474-4.
    20.Thiyagarajan M, Sarani A, Nicula C.Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications.J Appl Phys 2013;113:233302(1-8).https://doi.org/10.1063/1.4811339.
    21.Xiong Q, Nikiforov AY, González Má, Leys C, Lu XP.Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy.Plasma Sources Sci Technol 2013;22, 015011.https://doi.org/10.1088/0963-0252/22/1/015011.
    22.Milosavljevi V, Donegan M, Cullen P, Dowling D.Diagnostics of an O2–He RF atmospheric plasma discharge by spectral emission,Vol.014501.2014:1-8.https://doi.org/10.7566/JPSJ.83.014501.
    23.Nersisyan G, Graham WG.Characterization of a dielectric barrier discharge operating in an open reactor withflowing helium.Plasma Sources Sci Technol 2004;13:582-7.https://doi.org/10.1088/0963-0252/13/4/005.
    24.Sretenovi?G, Krsti?I, Kova?evi?V, Obradovi?B, Kuraica M.Spectroscopic study of helium DBD plasma jet.IEEE Trans Plasma Sci 2012;40:2870-8.https://doi.org/10.1109/TPS.2012.2219077.
    25.Nwankire CE, Law VJ, Nindrayog A, Twomey B, Niemi K, Milosavljevi?V, Graham WG,Dowling DP.Electrical, thermal and optical diagnostics of an atmospheric plasma jet system.Plasma Chem Plasma Process 2010;30:537-52.https://doi.org/10.1007/s11090-010-9236-5.
    26.Mohan J, Ramamoorthy A, Ivankovi?A, Dowling D, Murphy N.Effect of an atmospheric pressure plasma treatment on the mode I fracture toughness of a co-cured composite joint.J Adhes 2014;90:733-54.https://doi.org/10.1080/00218464.2013.772053.
    27.Soon J, Soung P, Dong L, Sang K.Surface modification of HDPE powders by oxygen plasma in a circulatingfluidized bed reactor.Polym Bull 2001;47:199-205.https://doi.org/10.1007/s002890170012.
    28.Pandiyaraj K, Selvarajan V, Deshmukh R, Changyou G.Adhesive properties of polypropylene(PP)and polyethylene terephthalate(PET)film surfaces treated by DC glow discharge plasma.Vacuum 2009;83:332-9.https://doi.org/10.1016/j.vacuum.2008.05.032.
    29.Abenojar J, Torregrosa-Coque R, Martinez M, Martin-Martinez J.Surface modifications of polycarbonate(PC)and acrylonitrile butadiene styrene(ABS)copolymer by treatment with atmospheric plasma.Surf Coatings Technol 2009;203:2173-80.https://doi.org/10.1016/j.surfcoat.2009.01.037.
    30.Kamińska A, Kaczmarek H, Kowalonek J.The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action.Eur Polym J 2002;38:1915-9.https://doi.org/10.1016/S0014-3057(02)00059-9.
    31.Tahara M, Cuong NK, Nakashima Y.Improvement in adhesion of polyethylene by glow-discharge plasma.Surf Coatings Technol 2003;173–174:826-830.doi:10.1016/S0257-8972.
    32.Dowling D, O'Neill F, Langlais S, Law V.Influence of dc pulsed atmospheric pressure plasma jet processing conditions on polymer activation.Plasma Process Polym2011;8:718-27.https://doi.org/10.1002/ppap.201000145.
    33.Tsougeni K, Vourdas N, Tserepi A, Gogolides E, Cardinaud C.Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces:from stable super hydrophilic to super hydrophobic surfaces.Langmuir 2009;25:11748-59.https://doi.org/10.1021/la901072z.
    34.Wang C, He X.Polypropylene surface modification model in atmospheric pressure dielectric barrier discharge.Surf Coatings Technol 2006;201:3377-84.https://doi.org/10.1016/j.surfcoat.2006.07.205.
    35.Gengenbach T, Griesser H.Post-deposition ageing reactions differ markedly between plasma polymers deposited from siloxane and silazane monomers.Polymer(Guildf)1999;40:5079-94.https://doi.org/10.1016/S0032-3861(98)00727-7.
    36.Dowling D, Tynan J, Ward P, Hynes A, Cullen J, Byrne G.Atmospheric pressure plasma treatment of amorphous polyethylene terephthalate for enhanced heatsealing properties.Int J Adhes Adhes 2012;35:1-8.https://doi.org/10.1016/j.ijadhadh.2012.01.025.
    37.Rodriguez-Santiago V, Bujanda A, Stein B, Pappas D.Atmospheric plasma processing of polymers in helium-water vapor dielectric barrier discharges.Plasma Process Polym 2011;8:631-9.https://doi.org/10.1002/ppap.201000186.
    38.Abourayana H, Dobbyn P, Dowling D.Enhancing the mechanical performance of additive manufactured polymer components using atmospheric plasma pretreatments.Plasma Process Polym 2017;15:1–8.doi:https://doi.org/10.1002/ppap.201700141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700