用户名: 密码: 验证码:
岩溶地下水位对降雨响应的时空变异特征及成因探讨——以广西桂林甑皮岩为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and cause of spatial and temporal variability of karst groundwater level's response to rainfall——a case study of Zengpiyan cave site in Guilin,Guangxi,China
  • 作者:王朋辉 ; 姜光辉 ; 袁道先 ; 汤庆佳 ; 张强
  • 英文作者:WANG Penghui;JIANG Guanghui;YUAN Daoxian;TANG Qingjia;ZHANG Qiang;Key Laboratory of Karst Dynamics,MNR&GZAR,Institute of Karst Geology,CAGS;School of Earth Sciences and Resources,China University of Geosciences;
  • 关键词:岩溶 ; 地下水位 ; 降雨响应 ; 序列相关 ; 时空变异
  • 英文关键词:karst;;piezometric level;;rainfall response;;serial correlation correlation;;spatio-temporal variability
  • 中文刊名:SKXJ
  • 英文刊名:Advances in Water Science
  • 机构:中国地质科学院岩溶地质研究所自然资源部广西岩溶动力学重点实验室;中国地质大学(北京)地球科学与资源学院;
  • 出版日期:2018-12-26 16:45
  • 出版单位:水科学进展
  • 年:2019
  • 期:v.30;No.148
  • 基金:国家自然科学基金资助项目(41172231; 41472239)~~
  • 语种:中文;
  • 页:SKXJ201901007
  • 页数:9
  • CN:01
  • ISSN:32-1309/P
  • 分类号:58-66
摘要
岩溶地下水位对降雨响应具有时空变异性,甑皮岩遗址地下水动力系统结构的认识存在分歧。利用高分辨率降雨水位数据,将研究区分割为不同含水体,通过水位动态、相关分析、滑动窗口采样相关分析等方法,探讨岩溶地下水对降雨响应时空变异特征及成因。结果表明,岩溶强发育、扩散流导水的含水体水位对降雨的响应表现为缓升缓降,水位自相关性强;发育岩溶管道的含水体水位表现为陡升陡降,水位自相关系数衰减速率快,对降雨响应的滞后时间短,互相关函数图呈多峰型;岩溶发育的极不均匀性是造成空间响应差异的主要原因。雨季地下水位对降雨响应的滞后时间远小于枯季;雨季累积降雨量大、水位埋深浅、包气带长期处于饱和或者近饱和状态,降雨垂直入渗补给历时短;雨季暴雨频繁导致含水体地下水短期内形成较大水力梯度,径流补给速度加快。综合分析认为,甑皮岩遗址地下水动力系统由NE向岩溶管道、NS向管道-裂隙以及NE向强径流带3个子径流系统组成。
        The response of karst groundwater level to rainfall features spatial and temporal variability. There is no consensus regarding the groundwater dynamic system structure of the Zengpiyan cave site in Guilin,Guangxi,China.Based on high-resolution data on rainfall water level,the study area was divided into different aquifers. The characteristics and cause of spatial and temporal variability of karst groundwater level's response to rainfall were explored using water level dynamics,correlation analysis,and sliding window cross-correlation analysis. The results show that in terms of the response to rainfall,the water level of aquifers with a high degree of karst development and diffusion flow for water diversion rises and falls slowly,featuring a strong autocorrelation in water level; the water level of aquifers developed with karst conduits rises and falls rapidly,with a fast decay rate of water-level autocorrelation coefficient,a short lag time in response to rainfall,and a multimodal cross-correlation function graph. The extreme non-uniformity of karst development is the primary cause of differences in spatial response. The response lag of the groundwater level to rainfall in the rainy season is much smaller than during the dry season. This is because,in the rainy season,there is a large amount of cumulative rainfall,the buried depth of groundwater is shallow,and the aerated zone is constantly in a saturated or near-saturated state,causing the groundwater supply to become saturated by vertical rainfall infiltration relatively quickly. Further,the frequent rainstorms in the rainy season can generate to a large hydraulic gradient in a short period of time,accelerating the runoff replenishment speed of aquifers. Taken together,the groundwater system of the Zengpiyan cave site consists of 3 sub-runoff systems,i. e. the NE karst conduit,the NS conduit-fracture,and the NE strong runoff zones. The research results can provide theoretical basis and technical reference for the cave site to formulate plans of preventing and controlling underground water hazards.
引文
[1]HARTMANN A,GOLDSCHEIDER N,WAGENER T,et al.Karst water resources in a changing world:review of hydrological modeling approaches[J].Reviews of Geophysics,2014,52(3):218-242.
    [2]LEE L J E,LAWRENCE D S L,PRICE M.Analysis of water-level response to rainfall and implications for recharge pathways in the Chalk aquifer,SE England[J].Journal of Hydrology,2006,330(3):604-620.
    [3]QI X F,WANG Y S,YANG L Z,et al.Time lags variance of groundwater level response to precipitation of Ji'nan karst spring watershed in recent 50 years[J].Carsologica Sinica,2016,35(2):384-393.
    [4]LUO M,CHEN Z,ZHOU H,et al.Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes[J].Hydrogeology Journal,2018,26(2):629-639.
    [5]杨平恒,张宇,王建力,等.水位变化影响下的河水-地下水侧向交互带地球化学动态[J].水科学进展,2017,28(2):293-301.(YANG P H,ZHANG Y,WANG J L,et al.Influence of water level change on the geochemical dynamics of the lateral hyporheic zone between river water and groundwater[J].Advances in Water Science,2017,28(2):293-301.(in Chinese))
    [6]郭芳,姜光辉,刘绍华,等.利用泉水电导率频率分布辨别岩溶含水系统的水源组分[J].水科学进展,2018,29(2):245-251.(GUO F,JIANG G H,LIU S H,et al.Identifying source water compositions of karst water systems by quantifying the conductance frequency distribution of springs[J].Advances in Water Science,2018,29(2):245-251.(in Chinese))
    [7]XANKE J,GOEPPERT N,SAWARIEH A,et al.Impact of managed aquifer recharge on the chemical and isotopic composition of a karst aquifer,Wala Reservoir[J].Hydrogeology Journal,2015,23(5):1027-1040.
    [8]DELBART C,VALDES D,BARBECOT F,et al.Spatial organization of the impulse response in a karst aquifer[J].Journal of Hydrology,2016,537:18-26.
    [9]YANG Y S,LI Y Y,CUI D H.Identification of karst features with spectral analysis on the seismic reflection data[J].Environmental Earth Sciences,2014,71(2):753-761.
    [10]WU L,WANG S,BAI X,et al.Quantitative assessment of the impacts of climate change and human activities on runoff change in a typical karst watershed,SW China[J].Science of the Total Environment,2017,601:1449-1465.
    [11]MIAO J,LIU G,CAO B,et al.Identification of strong karst groundwater runoff belt by cross wavelet transform[J].Water Resources Management,2014,28(10):2903-2916.
    [12]孙晨,束龙仓,鲁程鹏,等.裂隙-管道介质泉流量衰减过程试验研究及数值模拟[J].水利学报,2014,45(1):50-57.(SUN C,SHU L C,LU C P,et al.Physical experiment and numerical simulation of spring flow attenuation process in fissureconduit media[J].Journal of Hydraulic Engineering,2014,45(1):50-57.(in Chinese))
    [13]CAI Z,OFTERDINGER U.Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers,NW Ireland[J].Journal of Hydrology,2016,535:71-84.
    [14]HOCKING M,KELLY B F J.Groundwater recharge and time lag measurement through vertosols using impulse response functions[J].Journal of Hydrology,2016,535:22-35.
    [15]覃政教,林玉石,高明刚,等.桂林甑皮岩遗址岩溶地下水水害成因及防治对策[J].地球学报,2011,32(1):107-113.(QIN Z J,LIN Y S,GAO M G,et al.Causes of karst groundwater damage to the Zengpiyan ruins of Guilin and the prevention and control countermeasures[J].Acta Geoscientica Sinica,2011,32(1):107-113.(in Chinese))
    [16]王紫燕,姜光辉,郭芳,等.桂林甑皮岩地下水与地表水的水力交互作用[J].中国岩溶,2017,36(5):659-667.(WANG Z Y,JIANG G H,GUO F,et al.Hydraulic interaction between groundwater and surface water at Zengpiyan site in Guilin,China[J].Carsologica Sinica,2017,36(5):659-667.(in Chinese))
    [17]AMIRATAEE B,ZEINALZADEH K.Trends analysis of quantitative and qualitative changes in groundwater with considering the autocorrelation coefficients in west of Lake Urmia,Iran[J].Environmental Earth Sciences,2016,75(5):1-10.
    [18]金晶,张家皖,沈毅,等.基于滑动窗口的自适应拉伸系数超声弹性成像[J].仪器仪表学报,2014,35(9):2087-2093.(JIN J,ZHANG J W,SHEN Y,et al.Adaptive stretch factor method based on moving window for ultrasound elasticity imaging[J].Chinese Journal of Scientific Instrument,2014,35(9):2087-2093.(in Chinese))
    [19]郑晨,丁志峰,周晓峰,等.利用波形互相关方法识别分析灌县-安县断裂重复地震[J].地震学报,2015(2):299-311.(ZHENG C,DIGN Z F,ZHOU X F,et al.Detection and analysis of repeating earthquakes in Guanxian-Anxian fault by using waveform cross-correlation[J].Acta Seismologica Sinica,2015(2):299-311.(in Chinese))
    [20]束龙仓,刘丽红,陶玉飞,等.贵州后寨典型岩溶小流域水动力特征分析[J].河海大学学报(自然科学版),2008,36(4):433-437.(SHU L C,LIU L H,TAO Y F,et al.Hydrodynamic characteristic analysis of Houzhai karst watershed in Guizhou Province[J].Journal of Hohai University(Natural Sciences),2008,36(4):433-437.(in Chinese))
    [21]RUGEL K,GOLLADAY S W,JACKSON C R,et al.Delineating groundwater/surface water interaction in a karst watershed:lower flint river basin,southwestern Georgia,USA[J].Journal of Hydrology Regional Studies,2016,5(5):1-19.
    [22]曾莘茹,姜光辉,郭芳,等.桂林甑皮岩洞穴遗址地下水示踪及污染来源分析[J].中国岩溶,2016,35(3):245-253.(ZENG X R,JIANG G H,GUO F,et al.Tracer tests for pollutant sources of the Zengpiyan remainder cave in Guilin,China[J].Carsologica Sinica,2016,35(3):245-253.(in Chinese))
    [23]BORGHI A,RENARD P,CORNATON F.Can one identify karst conduit networks geometry and properties from hydraulic and tracer test data?[J].Advances in Water Resources,2016,90:99-115.
    [24]刘光亚.中国北方的岩溶水强径流带[J].河北地质大学学报,2017,40(2):15-19.(LIU G Y.Strong runoff zone in karst water in northern China[J].Journal of Hebei Geology University,2017,40(2):15-19.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700