用户名: 密码: 验证码:
上地幔俯冲板块的动力学过程:数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics of subducting plate in the upper mantle:numerical modeling
  • 作者:周信 ; 许志琴 ; 李忠海 ; 皇甫鹏鹏 ; 张进江
  • 英文作者:ZHOU Xin;XU ZhiQin;LI ZhongHai;HUANGFU PengPeng;ZHANG JinJiang;Institute of Geology,Chinese Academy of Geological Sciences;School of Earth and Space Sciences,Peking University;Key Laboratory of Computational Geodynamics,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences;School of Earth Sciences and Engineering,Nanjing University;
  • 关键词:俯冲板块 ; 地幔转换带 ; 海沟运动
  • 英文关键词:Subducting plate;;Mantle transition zone;;Trench motion
  • 中文刊名:DQWX
  • 英文刊名:Chinese Journal of Geophysics
  • 机构:中国地质科学院地质研究所;北京大学地球与空间科学学院;中国科学院大学地球与行星科学学院计算地球动力学实验室;南京大学地球科学与工程学院;
  • 出版日期:2019-07-15
  • 出版单位:地球物理学报
  • 年:2019
  • 期:v.62
  • 基金:国家自然科学基金(41622404,41774108,91855208);; 中科院战略性先导科技专项B(XDB18000000)联合资助
  • 语种:中文;
  • 页:DQWX201907009
  • 页数:11
  • CN:07
  • ISSN:11-2074/P
  • 分类号:107-117
摘要
大洋板块俯冲到地幔转换带,进而可形成不同的形态:板块可以停滞在660km不连续面,抑或穿过地幔转换带进入下地幔.这些不同的俯冲模式可进一步影响到海沟的运动.为更好地理解上地幔中俯冲板片的变形行为以及俯冲过程与海沟运动之间的关系,本文通过建立一系列高精度二维热-力学自由俯冲的数值模型,揭示了俯冲板块在上地幔中的变形方式及其与地幔转换带之间的相互作用过程.模拟结果显示,在俯冲板块与地幔转换带的相互作用过程中,其动力学过程可以分为以海沟后撤主导、海沟前进主导以及稳定型海沟等三种主要动力学类型.对于年龄较老,厚度较大的俯冲板块容易形成海沟后撤型俯冲,俯冲板块停滞在660km不连续面.相反,年龄较小,塑性强度较小的板块容易形成海沟前进型俯冲,俯冲板块穿越660km不连续面.
        Oceanic plate subducts into the mantle transition zone and may result in different subduction modes:subducting slab stagnates at 660 km discontinuity or penetrates through the mantle transition zone.The different subduction modes also influence the trench motion.To better understand the subduction and trench migration processes,a series of high resolution 2 D thermomechanical free subduction models are constructed to investigate the deformation style of the subducting slab in the upper mantle and its interaction with the mantle transition zone.The numerical results reveal three styles of subduction-induced trench migration:trench retreat,trench advance and stable trench.For the older and thicker subducting plate,it would be easierto achieve trench retreat mode,in which the subducting slab stagnates at 660 km discontinuity.In contrast,the younger and thinner subducting plate favors the formation of the trench advance mode,with the subducting slab penetrating through the 660 km discontinuity.
引文
Agrusta R,Goes S,Van Hunen J.2017.Subducting-slab transitionzone interaction:stagnation,penetration and mode switches.Earth and Planetary Science Letters,464:10-23.
    Billen M I.2008.Modeling the dynamics of subducting slabs.Annual Review of Earth and Planetary Sciences,36:325-356.
    Capitanio F A.2013.Lithospheric-age control on the migrations of oceanic convergent margins.Tectonophysics,593:193-200.
    Cz′kováH,Van Hunen J,Van Den Berg A P,et al.2002.The influence of rheological weakening and yield stress on the interaction of slabs with the 670km discontinuity.Earth and Planetary Science Letters,199(3-4):447-457.
    Crameri F,Schmeling H,Golabek G J,et al.2012.A comparison of numerical surface topography calculations in geodynamic modelling:an evaluation of the‘sticky air’method.Geophysical Journal International,189(1):38-54.
    Fukao Y,Obayashi M.2013.Subducted slabs stagnant above,penetrating through,and trapped below the 660km discontinuity.Journal of Geophysical Research:Solid Earth,118(11):5920-5938.
    Garel F,Goes S,Davies D R,et al.2014.Interaction of subducted slabs with the mantle transition-zone:a regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate.Geochemistry,Geophysics,Geosystems,15(5):1739-1765.
    Gerya T V,Yuen D A.2003.Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties.Physics of the Earth and Planetary Interiors,140(4):293-318.
    Gerya T V,Yuen D A.2007.Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems.Physics of the Earth and Planetary Interiors,163(1-4):83-105.
    Gerya T V,Connolly J A D,Yuen D A.2008.Why is terrestrial subduction one-sided?.Geology,36(1):43-46.
    Goes S,Agrusta R,Van Hunen J,et al.2017.Subduction-transition zone interaction:a review.Geosphere,13(3):644-664.
    Hafkenscheid E,Wortel M J R,Spakman W.2006.Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions.Journalof GeophysicalResearch:Solid Earth,111(B8):B08401,doi:10.1029/2005JB003791.
    He L J.2015.Thermal regime of the North China Craton:implications for craton destruction.Earth-Science Reviews,140:14-26.
    Hu J S,Liu L J,Zhou Q.2018.Reproducing past subduction and mantle flow using high-resolution global convection models.Earth and Planet.Phys.,2:189-207.doi:10.26464/epp2018019.
    Ito E,Takahashi E.1987.Ultrahigh-Pressure Phase Transformations and the Constitution of the Deep Mantle:High-Pressure Research in Mineral Physics.A Volume in Honor of Syun-iti Akimoto,221-229.
    Ito E,Akaogi M,Topor L,et al.1990.Negative pressure-temperature slopes for reactions formign MgSiO3perovskite from calorimetry.Science,249(4974):1275-1278.
    Karato S,Wu P.1993.Rheology of the upper mantle:a synthesis.Science,260(5109):771-778.
    Karato S I,Riedel M R,Yuen D A.2001.Rheological structure and deformation of subducted slabs in the mantle transition zone:implications for mantle circulation and deep earthquakes.Physics of the Earth and Planetary Interiors,127(1-4):83-108.
    Katsura T,Ito E.1989.The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures:precise determination of stabilities of olivine,modified spinel,and spinel.Journal of Geophysical Research:Solid Earth,94(B11):15663-15670.
    Kirby S H,Kronenberg A K.1987.Rheology of the lithosphere:selected topics.Reviews of Geophysics,25(6):1219-1244.
    Leng W,Gurnis M.2011.Dynamics of subduction initiation with different evolutionary pathways.Geochemistry,Geophysics,Geosystems,12(12):Q12018,doi:10.1029/2011GC003877.
    Li Z H,Ribe N M.2012.Dynamics of free subduction from 3-Dboundary element modeling.Journal of Geophysical Research:Solid Earth,117(B6):B06408,doi:10.1029/2012JB009165.
    Li Z H,Gerya T,Connolly J.2019.Variability of subducting slab morphologies in the mantle transition zone:Insight from petrological-thermomechanical modeling.Earth-Science Reviews,196,102874.
    Liao J,Gerya T,Thielmann M,et al.2017.3Dgeodynamic models for the development of opposing continental subduction zones:the hindu kush-pamir example.Earth and Planetary Science Letters,480:133-146.
    Obayashi M,Yoshimitsu J,Nolet G,et al.2013.Finite frequency whole mantle P wave tomography:improvement of subducted slab images.Geophysical Research Letters,40(21):5652-5657.
    Ranalli G.1995.Rheology of the Earth.2nd ed.Netherlands:Springer.
    Replumaz A,Kárason H,Van Der Hilst R D,et al.2004.4-Devolution of SE Asia′s mantle from geological reconstructions and seismic tomography.Earth and Planetary Science Letters,221(1-4):103-115.
    Ribe N M.2010.Bending mechanics and mode selection in free subduction:a thin-sheet analysis.Geophysical Journal International,180(2):559-576.
    Schellart W P.2010.Evolution of subduction zone curvature and its dependence on the trench velocity and the slab to upper mantle viscosity ratio.Journal of Geophysical Research:Solid Earth,115(B11):B11406,doi:10.1029/2009JB006643.
    Schellart W P,Rawlinson N.2010.Convergent plate margin dynamics:new perspectives from structural geology,geophysics and geodynamic modelling.Tectonophysics,483(1-2):4-19.
    Schellart W P,Stegman D R,Farrington R J,et al.2011.Influence of lateral slab edge distance on plate velocity,trench velocity,and subduction partitioning.Journal of Geophysical Research:Solid Earth,116(B10):B10408,doi:10.1029/2011JB008535.
    Sheng J,Liao J,Gerya T.2016.Numerical modeling of deep oceanic slab dehydration:implications for the possible origin of far field intra-continental volcanoes in northeastern China.Journal of Asian Earth Sciences,117:328-336.
    Shi Y N,Wei D P,Li Z H,et al.2018.Subduction mode selection during slab and mantle transition zone interaction:numerical modeling.Pure and Applied Geophysics,175(2):529-548.
    Stegman D R,Farrington R,Capitanio F A,et al.2010a.A regime diagram for subduction styles from 3-D numerical models of free subduction.Tectonophysics,483(1-2):29-45.
    Stegman D R,Schellart W P,Freeman J.2010b.Competing influences of plate width and far-field boundary conditions on trench migration and morphology of subducted slabs in the upper mantle.Tectonophysics,483(1-2):46-57.
    Stern R J.2002.Subduction zones.Reviews of Geophysics,40(4):1012,doi:10.1029/2001RG000108.
    Turcotte D L,Schubert G.2002.Geodynamics.2nd ed.Cambridge:Cambridge University Press.
    Wang Z S,Kusky T M,Capitanio F A.2016.Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone.Geophysical Research Letters,43(22):11567-11577.
    Zheng Y F,Chen Y X,Dai L Q,et al.2015.Developing plate tectonics theory from oceanic subduction zones to collisional orogens.Science China Earth Sciences,58(7):1045-1069.
    Zheng Y F,Chen R X,Xu Z,et al.2016.The transport of water in subduction zones.Science China Earth Sciences,59(4):651-681.
    Zhou C Y,Jin Z M,Zhang J F.2010.Mantle transition zone:an important field in the studies of Earth′s deep interior.Earth Science Frontiers(in Chinese),17(3):90-113.
    李忠海,刘明启,Gerya T.2015.俯冲隧道中物质运移和流体-熔体活动的动力学数值模拟.中国科学:地球科学,45(7):881-899.
    郑永飞,陈伊翔,戴立群等.2015.发展板块构造理论:从洋壳俯冲带到碰撞造山带.中国科学:地球科学,45(6):711-735.
    郑永飞,陈仁旭,徐峥等.2016.俯冲带中的水迁移.中国科学:地球科学,46(3):253-286.
    周春银,金振民,章军锋.2010.地幔转换带:地球深部研究的重要方向.地学前缘,17(3):90-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700