用户名: 密码: 验证码:
水位变化对干涸湖底沉积物有机碳矿化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of different water level gradients on the mineralization of sediment organic carbon in a dry lake
  • 作者:李典鹏 ; 姚美思 ; 孙涛 ; 刘隋赟昊 ; 张凯 ; 贾宏涛
  • 英文作者:LI Dianpeng;YAO Meisi;SUN Tao;LIU Suiyunhao;ZHANG Kai;JIA Hongtao;College of Grassland and Environmental Science,Xinjiang Agricultural University;Xinjiang Key Laboratory of Soil and Plant Ecological Processes;
  • 关键词:干旱区盐湖 ; 水位梯度 ; 碳排放 ; 湖底沉积物 ; 温度敏感系数 ; 巴里坤湖
  • 英文关键词:Arid region saline lake;;water level gradient;;carbon emission;;lake sediment;;temperature sensitivity(Q10);;Lake Barkol
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:新疆农业大学草业与环境科学学院;新疆土壤与植物生态过程重点实验室;
  • 出版日期:2019-05-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(31560171);; 新疆农业大学研究生科研创新项目(XJAUGRI2018011)联合资助
  • 语种:中文;
  • 页:FLKX201903026
  • 页数:10
  • CN:03
  • ISSN:32-1331/P
  • 分类号:275-284
摘要
人为干扰和气候变化会改变湖泊水位状态,明确不同水位条件下湖泊沉积物有机碳矿化特征及其影响因素,对了解内陆水生态系统碳循环具有重要意义.为探究干旱区典型盐湖沉积物有机碳矿化速率对水位变化的响应,以巴里坤湖干涸湖底原状沉积物为研究对象,初步探究了0 (T1)、-9 (T2)、-23 (T3)、-34 (T4)和-45 cm(T5)水位处理对沉积物有机碳矿化速率的影响.结果表明,T1、T2和T3处理有机碳矿化速率在试验初期较高(0~10 d),10 d后缓慢下降,T4和T5处理有机碳矿化速率呈先增加后降低趋势; T1(1.718μmol/(m2·s))与T3(1.784μmol/(m2·s))处理有机碳矿化速率不存在显著差异,T1处理有机碳矿化速率是T2、T4和T5处理的1.09、3.31和3.57倍,不同处理有机碳累积矿化量表现为T3>T1>T2>T4>T5.有机碳累积矿化量(Ct)占沉积物有机碳(C0)的比例(Ct/C0)介于0.012~0.044之间,沉积物有机碳潜在排放量(Ci)占C0的比例(Ci/C0)介于0.018~0.045之间;水位降低,沉积物有机碳矿化常数(k值)减小,T1处理k值最大(0.137 d),T4处理最小(0.032 d).线性方程Cr=0.008x+0.488能较好地模拟有机碳矿化速率(Cr)与水位(x)的关系;不同水位处理有机碳矿化速率与模拟柱中沉积物5 cm温度呈显著的指数函数关系,T4、T5处理有机碳矿化温度敏感系数(Q10)显著高于T1、T2和T3处理,即水位降低增加了巴里坤湖干涸湖底沉积物Q10.因此,就巴里坤湖干涸湖底沉积物而言,水位从0 cm降至-45 cm时有机碳矿化速率降低,Q10增加;反之水位上升则会促进有机碳矿化分解,Q10降低.水位持续下降抑制有机碳矿化可能是维持干旱区盐湖沉积物碳库稳定的机制之一.
        The loss of organic carbon during passage through the continuum of inland waters from soils to the sea is a critical issue for the global carbon cycle. However,the amount of organic carbon mineralized and released to the atmosphere during its transport remains an open question,hampered by the absence of predictors of organic carbon mineralization rates. The lake water level can be affected by human disturbance and climate change,and thus change the mineralization of the sediment organic carbon. The primary objective of this study was to study the influence of different water level gradients on the mineralization of sediment organic carbon in a saline lake in arid region. Sediments at 0-50 cm depth were sampled from Lake Barkol. The mineralization rates of sediment organic carbon were measured by Li-COR 8100 A under five underground water level treatments( T1,T2,T3,T4 and T5 represent underground water level 0,-9,-23,-34 and-45 cm) were settled and sediment organic carbon mineralization rates were measured by Li-COR 8100 A. Results showed the mineralization rates of sediment organic carbon under T1,T2 and T3 treatments were higher( 0-10 d) at the beginning of the experiment,and then decreased slowly. The carbon mineralization rates under T4 and T5 treatments increased firstly and then decreased. The mineralization rate of organic carbon under T1 treatment was 1.09,3.31 and3.57 times higher than that under T2,T4 and T5 treatments,respectively. The cumulative mineralization of sediment organic carbon under different treatments is T3>T1>T2>T4>T5. The ratios of cumulative mineralization of organic carbon( Ct) to total sediment organic carbon( C0)( Ct/C0) are ranged from 1.2% to 4.4%,and the ratios of potential organic carbon emissions( Ci) to C0( Ci/C0) are ranged from 1.8% to 4.5%. The decrease of underground water level reduced the mineralization constant( k value)of sediment organic carbon. The k value under T1 treatment was max( 0.137 d),and that under T4 treatment was lowest( 0.032 d). The best fitting model explaining the relationship between sediment organic carbon mineralization rate and water level( x,cm)was Cr= 0.008 x+0.488. There were significant positive relationships between organic carbon mineralization rate and sediment temperature at 5 cm depth. Water level had significant effect on the temperature sensitive of sediment organic carbon mineralization( Q10). The Q10 was highest under T5 treatment( 2.92),followed by T4( 2.54),and the T1 treatment had the smallest value( 1.92). These results indicated that the decrease of underground water level would reduce the mineralization rate of organic carbon and increas Q10. The continuous decline of underground water level inhibits organic carbon mineralization,which may be a mechanism to maintain the stability of carbon pools of lake sediment in arid regions.
引文
[1] IPCC. Climate change 2014:Synthesis report. contribution of working groupsⅠ,ⅡandⅢto the fifth assessment report of the intergovernmental panel on climate change. Geneva:intergovernmental panel on climate change,2014.
    [2] Zhang YM,Hu CS,Zhang JB et al. Research advances on source/sink intensities and greenhouse effects of CO2,CH4and N2O in agricultural soils. Chinese Journal of Eco-Agriculture,2011,19(4):966-975. DOI:10.3724/SP. J.1011.2011.00966.[张玉铭,胡春胜,张佳宝等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展.中国生态农业学报,2011,19(4):966-975.
    [3] Lehner B,Dll P. Development and validation of a global database of lakes,reservoirs and wetlands. Journal of Hydrology,2004,296(1):1-22. DOI:10.1016/j.jhydrol.2004.03.028.
    [4] Allen GH,Pavelsky TM. Global extent of rivers and streams. Science,2018,361(6402):585-588. DOI:10.1126/science.aat0636.
    [5] Messager ML,Lehner B,Grill G et al. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications,2016,7:13603. DOI:10.1038/ncomms13603.
    [6] Tranvik LJ,Downing JA,Cotner JB et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology&Oceanography,2009,54(6):2298-2314. DOI:10.4319/lo.2009.54.6_part_2.2298.
    [7] Bastviken D,Tranvik LJ,Downing JA et al. Freshwater methane emissions offset the continental carbon sink. Science,2011,331(6013):50. DOI:10.1126/science.1196808.
    [8] Raymond PA,Hartmann J,Lauerwald R et al. Global carbon dioxide emissions from inland waters. Nature,2013,503(7476):355-359. DOI:10.1002/2014GB004850.
    [9] Cole JJ,Prairie YT,Caraco NF et al. Plumbing the global carbon cycle:integrating inland waters into the terrestrial carbon budget. Ecosystems,2007,10:171-184. DOI:10.1007/s10021-006-9013-8.
    [10] Fierer N. Embracing the unknown:disentangling the complexities of the soil microbiome. Nature Reviews Microbiology,2017,15(10):579-590. DOI:10.1038/nrmicro.2017.87.
    [11] Gudasz C,Bastviken D,Steger K et al. Temperature-controlled organic carbon mineralization in lake sediments. Nature,2010,466(7305):478. DOI:10.1038/nature09186.
    [12] Marotta H,Pinho L,Gudasz C et al. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nature Climate Change,2014,4(6):467-470. DOI:10.1038/nclimate2222.
    [13] Burdige DJ. Temperature dependence of organic matter remineralization in deeply-buried marine sediments. Earth&Planetary Science Letters,2011,311(3):396-410. DOI:10.1016/j.epsl.2011.09.043.
    [14] Cardoso SJ,Enrich-Prast A,Pace ML et al. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnology&Oceanography,2014,59(1):48-54. DOI:10.4319/lo.2014.59.1.0048.
    [15] Wurtsbaugh WA,Miller G,Null SE et al. Decline of the world's saline lakes. Nature Geoscience,2017,10:816-821.DOI:10.1038/ngeo3052.
    [16] Zhang X,Wu YH,Zhang X. Water level variation of inland lakes on the south-central Tibetan Plateau in 1972-2012. Acta Geographica Sinica,2014,69(7):993-1001. DOI:10.11821/dlxb201407011.[张鑫,吴艳红,张鑫. 1972-2012年青藏高原中南部内陆湖泊的水位变化.地理学报,2014,69(7):993-1001.]
    [17] Ou Q,Wang JT,Zhou JH et al. Comparison of soil CO2flux among different water levels in coastal wetlands. Chinese Journal of Applied and Environmental Biology,2014,20(6):992-998.[欧强,王江涛,周剑虹等.滨海湿地不同水位梯度下的土壤CO2通量比较.应用与环境生物学报,2014,20(6):992-998.]
    [18] Zhong QC,Guan YZ,Liu Q et al. Effects of water table manipulation on the soil respiration in a reclaimed tidal wetland at Dongtan of Chongming Island,China. Chinese Journal of Applied Ecology,2013,24(8):2141-2150.[仲启铖,关阅章,刘倩等.水位调控对崇明东滩围垦区滩涂湿地土壤呼吸的影响.应用生态学报,2013,24(8):2141-2150.]
    [19] Hu BA,Jia HT,Zhu XP et al. Effect of water level on the soil respiration in a Swan Lake Wetland at Bayanbulak. Journal of Arid Land Resources and Environment,2016,30(7):175-179.[胡保安,贾宏涛,朱新萍等.水位对巴音布鲁克天鹅湖高寒湿地土壤呼吸的影响.干旱区资源与环境,2016,30(7):175-179.]
    [20] Wang SM,Dou HS eds. China lakes record. Beijing:Science Press,1998:354.[王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998:354.]
    [21] Wang ZB,He QY,Yang SY et al. Comparison and application of Shepard's and Folk's classifications to the subsurface mapping in the south yellow sea. Marine Geology&Quaternary Geology,2008,28(1):1-8.[王中波,何起祥,杨守业等.谢帕德和福克碎屑沉积物分类方法在南黄海表层沉积物编图中的应用与比较.海洋地质与第四纪地质,2008,28(1):1-8.]
    [22] Bao SD ed. Soil agricultural chemistry analysis. Beijing:China Agricultural Science Press,2000.[鲍士旦.土壤农化分析.北京:中国农业出版社,2000.]
    [23] Ma TE,Wei YC,Yang XL et al. Mineralization characteristics of soil organic carbon under long-term fertilization management. Chinese Journal of Eco-Agriculture,2016,24(1):8-16.[马天娥,魏艳春,杨宪龙等.长期施肥措施下土壤有机碳矿化特征研究.中国生态农业学报,2016,24(1):8-16.]
    [24] Zeng YW ed. Fundamentals of inorganic materials science:Second edition. Wuhan:Wuhan University of Technology Press,2015.[曾燕伟.无机材料科学基础:第2版.武汉:武汉理工大学出版社,2015.]
    [25] Mo DC,Xiao YL. Discuss the scope of the solution to Fick's second law. Chemistry,1990,(6):50-51.[莫鼎成,肖雅龄.关于菲克第二定律解的适用范围讨论.化学通报,1990,(6):50-51.]
    [26] Yang GR,Tong CL,Xiao AH et al. Effects of water content on redox potential and carbon mineralization of wetland sediments. Environmental Science,2009,30(8):2381-2386. DOI:10.13227/j.hjkx.2009.08.049.[杨钙仁,童成立,肖和艾等.水分控制下的湿地沉积物氧化还原电位及其对有机碳矿化的影响.环境科学,2009,30(8):2381-2386.]
    [27] Wang H,Yu LF,Chen LT et al. Responses of soil respiration to reduced water table and nitrogen addition in an alpine wetland on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology,2014,38(6):619-625. DOI:10.3724/SP.J.1258.2014.00057.[汪浩,于凌飞,陈立同等.青藏高原海北高寒湿地土壤呼吸对水位降低和氮添加的响应.植物生态学报,2014,38(6):619-625.]
    [28] Chimner RA,Pypker TG,Hribljan JA et al. Multi-decadal changes in water table levels alter peatland carbon cycling. Ecosystems,2017,20(5):1042-1057. DOI:s10021-016-0092-x.
    [29] Yang GS,Song CC,Wang L et al. Influence of water level gradient on marsh soil microbial activity of Calamagrostis angustifoli. Environmental Science,2010,31(2):444-449. DOI:10.13227/j.hjkx.2010.02.039.[杨桂生,宋长春,王丽等.水位梯度对小叶章湿地土壤微生物活性的影响.环境科学,2010,31(2):444-449.]
    [30] Chimner RA,Cooper DJ. Influence of water table levels on CO2emissions in a Colorado subalpine fen:an in situ microcosm study. Soil Biology&Biochemistry,2003,35(3):345-351. DOI:10.1016/S0038-0717(02)00284-5.
    [31] Jaatinen K,Laiho R,Vuorenmaa A et al. Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Environmental Microbiology,2008,10(2):339-353. DOI:10. 1111/j. 1462-2920.2007.01455.x.
    [32] Zhang WJ,Tong CL,Yang GR et al. Effects of water on mineralization of organic carbon in sediment from wetlands. Acta Ecologica Sinica,2005,25(2):249-253.[张文菊,童成立,杨钙仁等.水分对湿地沉积物有机碳矿化的影响.生态学报,2005,25(2):249-253.]
    [33] Ci E,Al-Kaisi MM,Wang LG et al. Soil organic carbon mineralization as affected by cyclical temperature fluctuations in a karst region of Southwestern China. Pedosphere,2015,25(4):512-523. DOI:10.1007/s10021-016-0092-x.
    [34] Hou CC. Effects of hydrological changes on soil carbon sequestration of marsh in the Sanjiang plain[Dissertation]. Changchun:Northeast Institute of Geography and Agricultural Ecology,Chinese Academy of Sciences,2012.[侯翠翠.水文条件变化对三江平原沼泽湿地土壤碳蓄积的影响[学位论文].长春:中国科学院东北地理与农业生态研究所,2012.]
    [35] Luo Y,Zhou X eds. Soil respiration and the environment. London:Elsevier,2006:85-92.
    [36] Wang XY,Li YL,Zhao XY et al. Responses of soil respiration to different environment factors in semi-arid and arid Areas.Acta Ecologica Sinica,2012,32(15):4890-4901.[王新源,李玉霖,赵学勇等.干旱半干旱区不同环境因素对土壤呼吸影响研究进展.生态学报,2012,32(15):4890-4901.]
    [37] Wang HB,Ma MG,Wang XF et al. Carbon flux variation characteristics and its influencing factors in an alpine meadow ecosystem on eastern Qinghai-Tibetan plateau. Journal of Arid Land Resources and Environment. 2014,28(6):50-56.[王海波,马明国,王旭峰等.青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素.干旱区资源与环境,2014,28(6):50-56.]
    [38] Carey JC,Tang J,Templer PH et al. Temperature response of soil respiration largely unaltered with experimental warming.Proceedings of the National Academy of Sciences of the United States of America,2016,113(48):3797-3802. DOI:10.1073/pnas.1605365113.
    [39] Peng SS,Piao SL,Tao W et al. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology&Biochemistry,2009,41(5):1008-1014. DOI:10.1016/j.soilbio.2008.10.023.
    [40] Ma'kiranta P,Laiho R,Fritze H et al. Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biology&Biochemistry,2009,41(4):695-703. DOI:10.1016/j.soilbio.2009.01.004.
    [41] Davidson EA,Verchot LV,Cattnio JH et al. Effects of soil water content on soil respiration in forests and cattle pastures of Eastern Amazonia. Biogeochemistry,2000,48(1):53-69. DOI:10.1023/A:1006204113917.
    [42] Hu BA,Jia HT,Zhu XP et al. Dynamics of soil respiration under different water conditions in an alpine wetland of the Xinjiang Bayanbulak Swan Lake. Research of Environmental Sciences,2016,29(7):1041-1049.[胡保安,贾宏涛,朱新萍等.新疆巴音布鲁克天鹅湖高寒湿地土壤呼吸对水分条件的响应.环境科学研究,2016,29(7):1041-1049.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700