用户名: 密码: 验证码:
基于边界效应理论确定热轧碳素钢的韧度与强度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:DETERMINATION OF FRACTURE TOUGHNESS AND YIELD STRENGTH OF HOT ROLLED CARBON STEEL BASED ON BOUNDARY EFFECT THEORY
  • 作者:管俊峰 ; 谢超鹏 ; HU ; Xiao ; zhi ; 姚贤华 ; 白卫峰
  • 英文作者:GUAN Jun-feng;XIE Chao-peng;HU Xiao-zhi;YAO Xian-hua;BAI Wei-feng;School of Civil Engineering and Communication, North China University of Water Resources and Electric Power;School of Mechanical and Chemical Engineering, University of Western Australia;
  • 关键词:边界效应理论 ; 热轧碳素钢 ; 断裂韧度 ; 屈服强度 ; 平面应力
  • 英文关键词:boundary effect theory;;hot rolled plain carbon steel;;fracture toughness;;yield strength;;plane stress
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:华北水利水电大学土木与交通学院;School of Mechanical and Chemical Engineering, University of Western Australia;
  • 出版日期:2019-03-20
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金面上项目(51779095;51679092);; 郑州市科技攻关项目(153PKJGG111,153PKJGG109)
  • 语种:中文;
  • 页:GCLX201903025
  • 页数:9
  • CN:03
  • ISSN:11-2595/O3
  • 分类号:241-249
摘要
该文研究确定热轧碳素钢的材料韧度与强度特性,提出一种确定热轧碳素钢材料的断裂韧度与屈服强度的模型及方法。建立了等效裂缝长度、名义应力等具体设计参数的计算表达式。通过相同尺寸而不同初始缝高比的单边拉伸Q235B热轧碳素钢板的系列试验,证明所提模型及方法的合理性与适用性。所提模型及方法只需由小尺寸单边裂缝钢板的拉伸试验测得的屈服荷载,即可同时确定出热轧碳素钢平面应力条件下的断裂韧度KC及屈服强度?Y。采用该文所提方法确定热轧碳素钢的材料特性,试验试样不需要满足现行国内外规范对试验试样尺寸、型式,加载条件等的严格规定,试样不需要预制疲劳裂纹。
        The material properties of hot rolled plain carbon steel were studied using boundary effect theory,linked to the properties of toughness and strength. The method for determining the fracture toughness and yield strength of hot rolled plain carbon steel was proposed. The formulas for design parameters ae and ?n were obtained. Based on the experimental research on the identical size steel plates of Q235 under tension with different ??ratio=a0/W(ratio of initial cracks a0 and plate size W), the reasonability and availability of this model and appropriate method were experimentally confirmed. The plain stress fracture toughness and yield strength can be measured through the small size single edge notch test(SENT) hot rolled plain carbon steel specimens of a single size with different initial cracks. On top of that, the specimens using this proposed method do not meet the size, pattern and loading requirement from current codes, and do not need the fatigue cracks.
引文
[1]GB/T 4161―2007,金属材料平面应变断裂韧度KIC试验方法[S].北京:中国标准出版社,2007.GB/T 4161―2007,Metallic materials-Determination of plane-strain fracture toughness[S].Beijng:Standards Press of China,2007.(in Chinese)
    [2]GB/T 21143―2007,金属材料准静态断裂韧度的统一试验方法[S].北京:中国标准出版社,2007.GB/T 21143―2007,Metallic materials-Unified method of test for determination of quasistatic fracture toughness[S].Beijing:Standards Press of China,2007.(in Chinese)
    [3]GB/T 7732―2008,金属材料表面裂纹拉伸试样断裂韧度试验方法[S].北京:中国标准出版社,2008.GB/T 7732―2008,Metallic materials-Fracture toughness testing method with surface crack tension[S].Beijing:Standards Press of China,2008.(in Chinese)
    [4]ASTM E399―90,Standard test method for plane-strain fracture toughness testing of metallic materials[S].American Society for Testing and Materials,Philadelphia,1990.
    [5]ASTM E399-12e2,Standard test method for linear-elastic plane-strain fracture toughness testing of high strength metallic materials[S].Philadelphia:American Society for Testing and Material,2013.
    [6]BS EN ISO 12737:1999,Metallic materialsDetermination of plane-strain fracture toughness[S].London:BSI,1999.
    [7]邢佶慧,郭长岚,张沛,等.Q235B钢材的微观损伤模型韧性参数校正[J].建筑材料学报,2015,18(2):228―236.Xing Jihui,Guo Changlan,Zhang Pei,et al.Calibrations of toughness parameters of microscopic damage model for steel Q235B[J].Journal of Build Materials,2015,18(2):228―236.(in Chinese)
    [8]Gajdo?Lu,?perl M,Siegl J.Apparent fracture toughness of low-carbon steel CSN 411353 as related to stress corrosion cracks[J].Materials&Design,2011,3032(8):4348―4353.
    [9]Zhu X K,Joyce J A.Review of fracture toughness(G,K,J,CTOD,CTOA)testing and standardization[J].Engineering Fracture Mechanics,2012,85(5):1―46.
    [10]Bach J,M?ller J J,G?ken M,et al.On the transition from plastic deformation to crack initiation in the high-and very high-cycle fatigue regimes in plain carbon steels[J].International Journal of Fatigue,2016,93(12):281―291.
    [11]黄学伟,张旭,苗同臣.建筑结构钢超低周疲劳断裂破坏的损伤预测模型[J].工程力学,2017,34(6):101―108.Huang Xuewei,Zhang Xu,Miao Tongchen.A damage prediction model for ultra low cycle fatigue failure of building structural steel[J].Engineering Mechanics,2017,34(6):101―108.(in Chinese)
    [12]施刚,陈玉峰.基于微观机理的Q460钢材角焊缝搭接接头延性断裂研究[J].工程力学,2017,34(4):13―21.Shi Gang,Chen Yufeng.Investigation on the ductile fracture behavior of Q460 steel fillet welded joints based on micro-mechanics[J].Engineering Mechanics,2017,34(4):13―21.(in Chinese)
    [13]刘希月,王元清,石永久,等.高强度钢框架梁柱节点焊接构造的断裂性能试验研究[J].工程力学,2018,35(5):54―64.Liu Xiyue,Wang Yuanqing,Shi Yongjiu,et al.Experimental study on the weld fracture behavior of high strength steel beam-to-column connections[J].Engineering Mechanics,2018,35(5):54―64.(in Chinese)
    [14]Wilson ML,Hawley RH,Duffy J.The effect of loading rate and temperature on fracture initiation in 1020hot-rolled steel[J].Engineering Fracture Mechanics,1980,13(2):371―385.
    [15]Lee S.Void initiation in ductile fracture[J].Scripta Metallurgica,1988,22(1):59―64.
    [16]赵章焰,吕运冰,孙国正.J积分法测量低碳钢Q235的断裂韧性KIC[J].武汉理工大学学报,2002,24(4):111―112.Zhao Zhangyan,Lu Yunbing,Sun Guozheng.Experiment measuring fracture toughness of Q235 steel by J integral[J].Journal of Wuhan University of Technology,2002,24(4):111―112.(in Chinese)
    [17]赵章焰,孙国正.用柔度标定法测量Q235钢断裂韧性[J].武汉理工大学学报(交通科学与工程版),2002,26(4):441―443.Zhao Zhangyan,Sun Guozheng.Measuring fracture toughness of Q235 steel using flexible method[J].Journal of Wuhan University of Technology(Transportation Science&Engineering),2002,26(4):441―443.(in Chinese)
    [18]Hu X Z,Wittman F.Size effect on toughness induced by crack close to free surface[J].Engineering Fracture Mechanics,2000,65(2/3):209―221.
    [19]Hu X Z,Duan K.Size effect:Influence of proximity of fracture process zone to specimen boundary[J].Engineering Fracture Mechanics,2007,74(7):1093―1100.
    [20]Hu X Z,Duan K.Size effect and quasi-brittle fracture:the role of FPZ[J].International Journal of Fracture,2008,154(1):3―14.
    [21]Hu X Z,Duan K.Mechanism behind the size effect phenomenon[J].Journal of Engineering Mechanics,ASCE,2010,136(1):60―68.
    [22]Wang Y S,Hu X Z,Li L,et al.Determination of tensile strength and fracture toughness of concrete using notched3-p-b specimens[J].Engineering Fracture Mechanics,2016,160(7):67―77.
    [23]Guan Junfeng,Hu X Z,Li Qingbin.In-depth analysis of notched 3-p-b concrete fracture[J].Engineering Fracture Mechanics,2016,165(10):57―71.
    [24]管俊峰,胡晓智,王玉锁,等.用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J].水利学报,2016,47(10):1298―1306.Guan Junfeng,Hu Xiaozhi,Wang Yusuo,et al.Effect of fracture toughness and tensile strength on fracture based on boundary effect theory[J].Journal of Hydraulic Engineering,2016,47(10):1298―1306.(in Chinese)
    [25]管俊峰,王强,Hu Xiaozhi,等.考虑骨料尺寸的混凝土岩石边界效应断裂模型[J].工程力学,2017,34(12):22―30.Guan Junfeng,Wang Qiang,Hu Xiaozhi,et al.Boundary effect fracture model for concrete and granite considering aggregate size[J].Engineering Mechanics,2017,34(12):22―30.(in Chinese)
    [26]Hu X Z,Guan Junfeng,Wang Yusuo,et al.Comparison of boundary and size effect models based on new developments[J].Engineering Fracture Mechanics,2017,175(4):146―167.
    [27]Junfeng Guan,Xiaozhi Hu,Xianhua Yao,et al.Fracture of 0.1 and 2 m long mortar beams under three-pointbending[J].Materials&Design,2017,133(11):363―375.
    [28]Junfeng Guan,Xiaozhi Hu,Chaopeng Xie,et al.Wedge-splitting tests for tensile strength and fracture toughness of concrete[J].Theoretical and Applied Fracture Mechanics,2018,93(2):263―275.
    [29]Tada H I,Paris P C,Irwin G R.The analysis of cracks handbook[M].New York:ASME Press,2000.
    [30]Murakami Y.Stress intensity factors hand book[M].Oxford:Pergamon Press,1987.
    [31]Wang Limin,Feng Ying,Chen Fanxiu,et al.Elastic-plastic test of Q235 steel bending beam with cracking resistance[J].Journal of Iron and Steel Research,International,2013,20(11):57―66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700