用户名: 密码: 验证码:
低能Cu_(13)团簇沉积薄膜的分子动力学模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular Dynamics Simulation Study on the Film Formation by Low Energy Cu_(13) Clusters Deposition
  • 作者:张世旭 ; 刘惠伟 ; 贺亦文 ; 张梅玲 ; 李公平
  • 英文作者:ZHANG Shixu;LIU Huiwei;HE Yiwen;ZHANG Meiling;LI Gongping;School of Nuclear Science and Technology,Lanzhou University;Key Laboratory of Design of Special Function Materials and Structures Ministry of Education,Lanzhou University;
  • 关键词:分子动力学模拟 ; 团簇沉积薄膜 ; Cu_(13)团簇 ; Fe(001)表面
  • 英文关键词:molecular dynamics simulation;;film formation deposited by clusters deposition;;Cu_(13) cluster;;Fe(001) surface
  • 中文刊名:HWDT
  • 英文刊名:Nuclear Physics Review
  • 机构:兰州大学核科学与技术学院;兰州大学特殊功能材料与结构设计教育部重点实验室;
  • 出版日期:2019-07-30 10:17
  • 出版单位:原子核物理评论
  • 年:2019
  • 期:v.36;No.142
  • 基金:国家自然科学基金资助项目(11604129);; 兰州大学中央高校基本科研业务费专项资金资助项目(lzujbky-2015-67,lzujbky-2019-56)~~
  • 语种:中文;
  • 页:HWDT201902017
  • 页数:7
  • CN:02
  • ISSN:62-1131/O4
  • 分类号:119-125
摘要
利用分子动力学模拟方法对Cu_(13)团簇在Fe(001)表面上沉积薄膜进行了研究,分析了不同沉积条件对薄膜生长模式的影响,对比分析了不同沉积条件下表面粗糙度、缺陷分布和外延度等薄膜性质的差异。Cu_(13)团簇的初始沉积能量范围为0.1~10.0 eV/atom,沉积率为1.0 clusters/ps,衬底温度分别为300,700和1 000 K。模拟结果表明:团簇初始沉积能量主要影响薄膜生长模式,当初始沉积能量为7.5 e V/atom的Cu_(13)团簇沉积到温度为300 K的Fe(001)表面时,可形成表面光滑、内部缺陷少和较好外延度的高质量Cu薄膜。
        The formation of Cu film on Fe(001)surface by depositing Cu_(13)clusters was investigated via the molecular dynamics simulation.The incident energy range of Cu_(13)clusters was from 0.1 to 10.0 eV/atom,and the deposition rate was 1 clusters/ps.The temperature of substrate was 300,700 and 1 000 K,respectively.The effects of incident energy of cluster and substrate temperature on the growth mode,surface roughness,defects distribution and epitaxy degree of film were studied.The simulation results show that the incident energy of Cu_(13)clusters plays a dominant role in the growth mode of film.In addition,when the incident energy of Cu_(13)clusters is 7.5 eV/atom and the substrate temperature is 300 K,the Cu film formed on Fe(001)surface is smoother,few defects and better epitaxy degree.
引文
[1]ROBBENNOLT S,QUINTANA A,PELLICER E,et al.Nanoscale,2018,10(30):14570.
    [2]MODAK R,SRINIVASU V V,SRINIVASAN A.Magnetism and Magnetic Materials,2018,464:50.
    [3]KREUZPAINTNER W,WIEDEMANN B,STAHN J,et al.Physical Review Applied,2017,7(5):054004.
    [4]ZHOU L,MA L,LIU T,et al.Superconductivity and Novel Magnetism,2016,29(5):1325.
    [5]TOPKAYA R.Superconductivity and Novel Magnetism,2016,30(5):1275.
    [6]MORADIAN R,GHADERI A,ELAHI S M.Materials Science:Materials in Electronics,2016,27(8):7987.
    [7]DESAUTELS R D,SHUEH C,LIN K W,et al.Applied Physics Letters,2016,108(17):172410.
    [8]TALU S,STACH S,SOLAYMANI S,et al.Electroanalytical Chemistry,2015,749:31.
    [9]STACH S,GARCZYK Z,TALU S,et al.Physical Chemistry C,2015,119(31):17887.
    [10]GAO F,PENG X,HUANG C,et al.AIP Advances,2018,8(4):045208.
    [11]ZHANG X,HICKEL T,ROGAL J,et al.Physical Review Letters,2017,118(23):236101.
    [12]Allen M P,Tildesley D J.Computer Simulation of Liquids[M].Oxford:Clarendon Press,1987.
    [13]MULLER K H.Applied Physics,1987,61(7):2516.
    [14]HWANG C C,CHANG J G,HUANG G J,et al.Applied Physics,2002,92(10):5904.
    [15]ZAMINPAYMA E,NAYEBI P,MIRABBASZADEH K.Cluster Science,2008,19(4):623.
    [16]CHEN C K,CHANG S C,CHEN C L.Applied Physics,2017,107(12):124309.
    [17]HONG Z H,FANG T H,LIN S J,et al.Computational Materials Science,2010,49(4):850.
    [18]HONG Z H,HWANG S F,FANG T H.Surface Science,2011,605(s1-2):46.
    [19]HWANG S F,LI Y H,HONG Z H.Computational Materials Science,2012,56:85.
    [20]CHENG Y T,LIANG T,NIE X W,et al.Surface Science,2014,621:109.
    [21]ZHU G,SUN J,ZHANG L,et al.Crystal Growth,2018,492:60.
    [22]CHEN X Z,ZHANG S X,LI G P.Atomic and Molecular Physics,2017,34(5):865.(in Chinese)(陈炫芝,张世旭,李公平.原子与分子物理学报,2017,34(5):865.)
    [23]ZHANG S X,GONG H F,CHEN X Z,et al.Applied Surface Science,2014,314:433.
    [24]ZHANG S X,GONG H F,GAO N,et al.Computational Materials Science,2014,85:230.
    [25]ZHANG S X,LI G P,GONG H F,et al.2015,97(1):165.
    [26]NOSE S.Chemical Physics,1984,81(1):511.
    [27]ZHANG M L,LI G P.Solid State Phenomena,2007,121-123:607.
    [28]ACKLAND G J,BACON D J,CALDER A F,et al.Philosophical Magazine A,1997,75(3):713.
    [29]SWOPE W C,ANDERSEN H C,BERENS P H,et al.Chemical Physics,1982,76:637.
    [30]ANDERSEN H C.J Comput Phys,1983,52:24.
    [31]HAILE J M,JOHNSTON I,MALLINCKRODT A J,et al.Computers in Physics,1993,7:625.
    [32]VOLMER M,WEBER A.Zeitschrift f¨ur Physikalische Chemie,1925,119:277.
    [33]FRANK F C,VAN D M J H.Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1949,198(1053):205.
    [34]PIMPINELLI A,VILLAIN J.Materials Research Bulletin,1998,1(3):400.
    [35]ZHANG Shixu.Molecular Dynamics Simulation of Cu Clusters Deposition on a Fe(001)Surface[D].Lanzhou:Lanzhou University,2014.(in Chinese)(张世旭.Cu团簇沉积到Fe(001)表面的分子动力学模拟[D].兰州:兰州大学,2014.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700