用户名: 密码: 验证码:
磨矿环境和晶格杂质对锂辉石浮选的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of grinding environment and lattice impurities on spodumene flotation
  • 作者:朱广丽 ; 王毓华 ; 王旭明 ; Jan ; D.MILLER ; 卢东方 ; 郑霞 ; 赵悦豪 ; 郑海涛
  • 英文作者:Guang-li ZHU;Yu-hua WANG;Xu-ming WANG;Jan D.MILLER;Dong-fang LU;Xia-yu ZHENG;Yue-hao ZHAO;Hai-tao ZHENG;School of Minerals Processing and Bioengineering, Central South University;College of Mines and Earth Sciences, University of Utah;
  • 关键词:磨矿 ; 晶格取代 ; 金属杂质 ; DFT计算 ; 锂辉石 ; 解理 ; 浮选
  • 英文关键词:grinding;;lattice substitution;;metal ion impurities;;density functional theory (DFT) calculation;;spodumene;;cleavage;;flotation
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学资源加工与生物工程学院;College of Mines and Earth Sciences, University of Utah;
  • 出版日期:2019-07-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(51674290)supported by the National Natural Science Foundation of China;; Project(201606370130)supported by the China Scholarship Council;; Project(2016zzts107)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
  • 语种:英文;
  • 页:ZYSY201907019
  • 页数:11
  • CN:07
  • ISSN:43-1239/TG
  • 分类号:178-188
摘要
研究油酸钠体系中磨矿对锂辉石浮选行为的影响。不同磨矿环境导致锂辉石表面暴露的金属活性位点的含量有差异,从而显著影响锂辉石的可浮性。酸处理后金属活性位点脱离锂辉石表面,使得锂辉石的可浮性下降,进一步表明金属活性位点对锂辉石浮选的重要作用。金属离子杂质可能来源于磨矿环境或晶格杂质。密度泛函理论(DFT)计算表明,杂质铁、钙质点主要是以晶格取代的形式存在于锂辉石表面,镁难以发生晶格取代。与钙和镁相比,铁更易于与油酸钠发生相互作用。扫描电镜结果表明,锂辉石的粒度和解理特性不同,导致其暴露晶面的差异。在不同磨矿环境下,粒度、解理特性和金属离子杂质对油酸钠捕收剂浮选锂辉石起着重要作用。
        The effect of grinding on the spodumene flotation was investigated. The flotation response of spodumene ground by different mills was different, due to the variation of metal ions on spodumene surfaces caused by grinding environments and/or impurities. The samples were subjected to acid pickling treatment to remove most of the metal ions from the surfaces, and then all samples showed the same poor flotation response, which confirmed the significance of surface metal ions. Metal ion impurities may come from both grinding environments and lattice substitutions in spodumene. Density functional theory(DFT) calculation revealed that Fe and Ca could exist as lattice substitutions on the spodumene surface while Mg substitution is unlikely to occur. Furthermore, Fe is considered to be active site for the absorption of sodium oleate on the spodumene surface. Morphology analysis showed differences in particle size and shape for samples ground by different mills, resulting in different amounts of exposed surfaces. The particle size, cleavage characteristics caused by grinding environments, and metal ion impurities originated from grinding and isomorphous substitutions, play significant roles in the chemisorption of collector on the spodumene surface.
引文
[1] KEITH E. Critical metals handbook:Lithium[M]. Oxford, UK, John Wiley&Sons, 2013:230-260.
    [2] CHU S. Critical materials strategy[M]. DIANE Publishing, 2011:69-95.
    [3] GUNTHER M, LARS R, MICHAEL H, MARTIN B. Lithium market research–global supply, future demand and price development[J]. Energy Storage Materials, 2017, 6:171-179.
    [4] BASUDEV S. Recovery and recycling of lithium:A review[J].Separation and Purification Technology, 2017, 172:388-403.
    [5] XIE Zhen-fu, WANG Yu-hua, YU Fu-shun, TANG Zi-jun, ZHU Guang-li. Reviews of flotation research on pegmatite spodumene ores[J]. Chinese Journal of Rare Metals, 2013, 37(4):641-649.
    [6] XU Long-hua, HU Yue-hua, WU Hou-qin, TIAN Jia, LIU Jing, GAO Zhi-yong, WANG Li. Surface crystal chemistry of spodumene with different size fractions and implications for flotation[J]. Separation and Purification Technology, 2016, 169:33-42.
    [7] LI Si, LU Dong-fang, CHEN Xing-hua, ZHENG Xia-yu, LI Xu-dong,CHU Hao-ran, WANG Yu-hua. Industrial application of a modified pilot-scale Jameson cell for the flotation of spodumene ore in high altitude area[J]. Powder Technology, 2017, 320:358-361.
    [8] MOON K S. Surface and crystal chemistry of spodumene and its flotation behavior[D]. Berkeley:University of California, 1986,11-73.
    [9] BEENA R, SATHISH P, JYOTSNA T, MOON K S, FUERSTENAU D W. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals[J]. Journal of Colloid and Interface Science,2011, 362(2):510-516.
    [10] MOON K S, FUERSTENAU D W. Surface crystal chemistry in selective flotation of spodumene(Li Al[Si O3]2)from other aluminosilicates[J]. International Journal of Mineral Processing,2003, 72:11-24.
    [11] ZHU Guang-li, WANG Yu-hua, LIU Xiao-wen, YU Fu-shun, LU Dong-fang. The cleavage and surface properties of wet and dry ground spodumene and their flotation behavior[J]. Applied Surface Science, 2015, 357:333-339.
    [12] WANG Yu-hua, YU Fu-shun. Effects of metallic ions on the flotation of spodumene and beryl[J]. Journal of China University of Mining and Technology, 2007, 17(1):35-39.
    [13] YU Fu-shun, WANG Yu-hua, WANG Jin-ming, XIE Zhen-fu.Investigation on different behavior and mechanism of Ca(II)and Fe(III)adsorption on spodumene surface[J]. Physicochemical Problems of Mineral Processing, 2014, 50(2):535-550.
    [14] LI En-ze, DU Zhi-ping, WANG Bo, CHENG Huai-gang, CHENG Fang-qin. Flotation mechanism of soluble salts with high ionic strength[J]. Progress in Chemistry, 2016, 28(9):1417-1425.
    [15] YU Fu-shun, WANG Yu-hua, WANG Jin-ming, XIE Zhen-fu,ZHANG Lei. First-principle investigation on mechanism of Ca ion activating flotation of spodumene[J]. Rare Metals, 2014, 33(3):358-362.
    [16] LIU Wei-jun, ZHANG Shi-qiu, WANG Wei-qing, ZHANG Jie, YAN Wu, DENG Jie. The effects of Ca(II)and Mg(II)ions on the flotation of spodumene using Na OL[J]. Minerals, 2015, 79:40-46.
    [17] ZHANG Jie, WANG Wei-qing, LIU Jing, HUANG Yang, FENG Qi-ming, ZHAO Hong. Fe(III)as an activator for the flotation of spodumene, albite, and quartz minerals[J]. Minerals Engineering,2014, 61:16-22.
    [18] FUJII A T, ISOTANI S. Comparative study of five varieties of spodumene through optical absorption[J]. Pesquisa Agropecuária Brasileira, 1983, 16(03):1-14.
    [19] ISOTANI S, KAZUNORI W, AKIYOSHI M, WALDEMAR B. UV optical absorption spectra analysis of spodumene crystals from Brazil[J]. Physica B:Condensed, 2007, 391(2):322-330.
    [20] HOLUJ F. EPR of Mn++in spodumene. I. Natural crystals[J].Canadian Journal of Physics, 1968, 46(4):287-302.
    [21] SALIS M. Lattice defects in naturalα-spodumene[J]. Il Nuovo Cimento D, 1995, 17(6):649-651.
    [22] SUN Chuan-yao, YIN Wan-zhong. Crystal chemistry analysis on flotability difference of spodumenes with different colors[J].Nonferrous Metals, 2000, 52(4):107-110.(in Chinese)
    [23] CHEN Ye, CHEN Jian-hua, GUO Jin. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite[J]. Minerals Engineering, 2010, 14:1120-1130.
    [24] PAYNE M C, TETER M P, ALLAN D C, ARIAS T,JOANNOPOULOS J D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992, 64(4):1045-1097.
    [25] PERDEW, J P, WANG Yue. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23):13244-13249.
    [26] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990,41(11):892-7895.
    [27] LIU Wei-ping, WANG Xu-ming, XU Hui, MILLER J D. Lauryl phosphate adsorption in the flotation of bastnaesite,(Ce,La)FCO3[J].Journal of Colloid and Interface Science, 2017, 490:825-833.
    [28] DANA E S, DANA J D. A text-book of mineralogy:With an extended treatise on crystallography and physical mineralogy[M].New York:Wiley, 1883:191-203.
    [29] PRINCE K C, MATTEUCCI M, KUEPPER K, CHIUZBAIAN S G,BARTKOWSKI S, NEUMANN M. Core-level spectroscopic study of Fe O and Fe S2[J]. Physical Review B, 2005, 71(8):085102.
    [30] XU Long-hua, HU Yue-hua, WU Hou-qin, TIAN Jia, LIU Jing, GAO Zhi-yong. Surface crystal chemistry of spodumene with different size fractions and implications for flotation[J]. Separation and Purification, 2016, 169:33-42.
    [31] XU Long-hua, PENG Tie-feng, TIAN Jia, LU Zhong-yuan, HU Yue-hua, SUN Wei. Anisotropic surface physicochemical properties of spodumene and albite crystals:Implications for flotation separation[J]. Applied Surface Science, 2017, 426:1005-1022.
    [32] XU Long-hua, TIAN Jia, DONG Fa-qin, WU Hou-qin, WANG Zhen,WANG Jin-ming. Surface crystal chemistry and anisotropy of spodumene flotation with sodium oleate[J]. The Chinese Jounal of Nonferrous Metals, 2016, 26(10):2214-2221.(in Chinese)
    [33] LIU Cheng, ZHU Guang-li, SONG Shao-xian, LI Hong-qiang.Flotation separation of smithsonite from quartz using calcium lignosulphonate as a depressant and sodium oleate as a collector[J].Minerals Engineering, 2019, 131:385-391.
    [34] LIU Cheng, ZHANG Wen-cai, SONG Shao-xian, LI Hong-qiang. A novel method to improve carboxymethyl cellulose performance in the flotation of talc[J]. Minerals Engineering, 2019, 131:23-27.
    [35] MULLIKEN R S. Electronic population analysis on LCAO-MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations[J]. The Journal of Chemical Physics, 1955,23(10):1833-1840.
    [36] SEGALL, M D, SHAH R, PICKARD C J, PAYNE M C. Population analysis of plane-wave electronic structure calculations of bulk materials[J]. Physical Review B, 1996, 54(23):317-320.
    [37] SEGALL M D, PICKARD C J, SHAH R, PAYNE M C. Population analysis in plane wave electronic structure calculations[J]. Molecular Physics, 1996, 89(2):571-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700