用户名: 密码: 验证码:
MnO_2/NaY复合材料的制备及其对SO_2脱除性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of MnO_2/NaY composite and its performance in removing SO_2
  • 作者:陈林涛 ; 大坂侑吾 ; 刘学成 ; 何兆红 ; 李兴 ; 黄宏宇
  • 英文作者:CHEN Lintao;OSAKA Yugo;LIU Xuecheng;HE Zhaohong;LI Xing;HUANG Hongyu;Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences;University of Chinese Academy of Sciences;CAS Key Laboratory of Renewable Energy;Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development;Kanazawa University;Chongqing Technology and Business University;
  • 关键词:烟道气 ; 二氧化硫 ; 吸附剂 ; 二氧化锰 ; 分子筛
  • 英文关键词:flue gas;;sulfur dioxide;;adsorbents;;manganese dioxide;;molecular sieve
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国科学院广州能源研究所;中国科学院大学;中国科学院可再生能源重点实验室;广东省新能源和可再生能源研究开发与应用重点实验室;日本金泽大学;重庆工商大学;
  • 出版日期:2019-05-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.332
  • 基金:中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC038);; 广东省省级科技计划(2016A050502040);; 广东省新能源和可再生能源研究开发与应用重点实验室项目(Y807S21001)
  • 语种:中文;
  • 页:HGJZ201905025
  • 页数:9
  • CN:05
  • ISSN:11-1954/TQ
  • 分类号:225-233
摘要
以NaY分子筛为载体,MnO_2为活性组分,采用沉淀法制备MnO_2/NaY复合脱硫材料;通过X射线衍射(XRD)、扫描电子显微镜(SEM)、氮气吸附脱附法(N2-吸附脱附)、X射线光电子能谱(XPS)、热重分析(TG)等手段进行材料的物理化学结构表征;使用容量法装置测试复合材料的脱硫性能;考察MnO_2不同负载量及不同反应温度对MnO_2/NaY复合材料脱硫性能的影响。结果表明:MnO_2/NaY复合材料的孔容越大,其脱硫性能越好;多孔珊瑚状MnO_2脱硫性能优于棒状MnO_2;随着MnO_2负载量及反应温度的增加,MnO_2/NaY的脱硫性能先增加后降低,MnO_2/NaY-41%在400℃时的脱硫性能最好,第1h脱硫量达到114.56mgSO_2/g材料;500℃时复合材料脱硫性能下降,是由于脱硫反应过程中MnO_2分解生成Mn_3O_4;MnO_2/NaY比纯MnO_2拥有更好的脱硫性能,反应温度为300℃和400℃时,MnO_2/NaY-41%较纯MnO_2的第1h脱硫量分别提高28.3%和56.1%。MnO_2/NaY-41%复合材料在中低温下的高效脱硫性能有望应用于船舶尾气的深度脱硫。
        MnO_2/NaY composite for desulfurization was prepared by precipitation method with NaY molecular sieve as the carrier and MnO_2 as the active component. The structure of the MnO_2/NaY composite was characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), nitrogen adsorption desorption(N2-adsorption desorption), X-ray photoelectron spectroscopy(XPS) and thermogravimetry(TG). The capacity method was used to test the desulfurization performance of the composite material and the influence of different loading capacity of MnO_2 and different reaction temperature were studied. The results showed that the larger the pore volume of MnO_2/NaY composite, the better the desulfurization performance. Porous coral MnO_2 has better desulphurization performance than rod-like MnO_2. The desulfurization performance of MnO_2/NaY increased first and then decreased with the increase of MnO_2 loading amount and reaction temperature. MnO_2/NaY-41% showed the best desulfurization performance at 400℃, and the desulfurization capacity reached 114.56 mgSO_2/gMaterialsin 1 h.The decline in desulfurization performance at 500℃ is due to the decomposition of MnO_2 into Mn_3O_4 during the desulfurization process. The MnO_2/NaY showed better desulfurization performance than pure MnO_2. When the reaction temperature reached 300℃ and 400℃ respectively, the desulfurization performance of MnO_2/NaY-41% was higher than that of pure MnO_2 by 28.3% and 56.1% in 1 h. The composite is expected to be applied in the desulfurization of marine exhaust gas.
引文
[1]LI L Y,KING D L.High-capacity sulfur dioxide absorbents for diesel emissions control[J].Ind.Eng.Chem.Res.,2005,44(1):168-177.
    [2]BUENO-LóPEZ A,GARCíA-MARTíNEZ J,GARCíA-GARCíA A,et al.Regenerable CaO sorbents for SO2retention:carbonaceous versus inorganic dispersants[J].Fuel,2002,81(18):2435-2438.
    [3]LIU X C,OSAKA Y,HUANG H Y,et al.Development of highperformance SO2trap materials in the low-temperature region for diesel exhaust emission control[J].Sep.Purif.Technol.,2016,162:127-133.
    [4]SINHA A K,SUZUKI K,TAKAHARA M,et al.Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification[J].Angew.Chem.,2007,46(16):2949-2952.
    [5]LUO Y,LI D.Experimental study of nanometer TiO2for use as an adsorbent for SO2removal[J].Dev.Chem.Eng.Mineral Process,2002,10(3/4):443-457.
    [6]WANG S Q,LIU M Z,SUN L L,et al.Study on the mechanism of desulfurization and denitrification catalyzed by TiO2in the combustion with biomass and coal[J].Korean J.Chem.Eng.,2017,34(6):1882-1888.
    [7]KYLHAMMAR L,CARLSSON P A,INGELSTEN H H,et al.Regenerable ceria-based SOx traps for sulfur removal in lean exhausts[J].Appl.Catal.B-Environ.,2008,84(1):268-276.
    [8]YAN Z,WANG J P,ZOU R Q,et al.Hydrothermal synthesis of CeO2nanoparticles on activated carbon with enhanced desulfurization activity[J].Energy.Fuels.,2012,26(9):5879-5886.
    [9]COOPER D A.Exhaust emissions from ships at berth[J].Atmos.Environ.,2003,37(27):3817-3830.
    [10]OSAKA Y,YAMADA K,TSUJIGUCHI T,et al.Study on the optimized design of deSOx filter operating at low temperature in diesel exhaust[J].J.Chem.Eng.Jpn.,2014,47(7):555-560.
    [11]MATHIEU Y,TZANIS L,SOULARD M,et al.Adsorption of SOx by oxide materials:a review[J].Fuel Process Technol.,2013,114(3):81-100.
    [12]WAQIF M,SAUR O,LAVALLEY J C,et al.Nature and mechanism of formation of sulfate species on copper/alumina sorbent-catalysts for SO2removal[J].J.Phys.Chem.,1991,22(33):4051-4058.
    [13]PAYLISH J H,SONDREAL E A,MANN M D,et al.Status review of mercury control options for coal-fired power plants[J].Fuel Process Technol.,2003,82(2):89-165.
    [14]LIU S H,YAN N Q,LIU Z R,et al.Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants[J].Environ.Sci.Technol.,2007,41(4):1405-1412.
    [15]HUTSON N D,ATTWOOD B C,SCHECKEL K G.XAS and XPScharacterization of mercury binding on brominated activated carbon[J].Environ.Sci.Technol.,2007,41(5):1747-1752.
    [16]LIU X C,OSAKA Y,HUANG H Y,et al.Development of lowtemperature desulfurization performance of a MnO2/AC composite for a combined SO2trap for diesel exhaust[J].RSC Adv.,2016,6(98):96367-96375.
    [17]RICHER M,BERNDERT H,ECKELT R,et al.Zeolite-mediated removal of NOx by NH3from exhaust streams at low temperature[J].Catal.Today,1999,54(4):531-545.
    [18]RICHTER M,TRUNSCHKE A,BENTRUP U,et al.Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaYcomposite catalysts[J].J.Catal.,2002,206(1):98-113.
    [19]SCHRIMPF G,SCHLENKRICH M,BRICKMANN J,et al.Molecular dynamics simulation of zeolite NaY.A study of structure,dynamics,and thermalization of sorbates[J].J.Phys.Chem.,1992,96(18):7404-7410.
    [20]赵文江,刘靖,朱金红,等.纳米NaY分子筛的合成[J].工业催化,2004,12(4):50-53.ZHAO W J,LIU J,ZHU J H,et al.Synthesis of nanoparticle NaYmolecular sieve[J].Ind.Catal.,2004,12(4):50-53.
    [21]DRAGAN G.The individual adsorption of carbon dioxide and sulphur dioxide by Y zeolites[J].Rev.Chim-Bucharest.,2010,61(9):897-902.
    [22]MARCU I C,SANDULESCU I.Study of sulfur dioxide adsorption on Yzeolite[J].J.Serb.Chem.Soc.,2004,69(7):563-569.
    [23]JIA M L,BAI H F,ZHAO R G T,et al.Preparation of Au/CeO2catalyst and its catalytic performance for HCHO oxidation[J].J.Rare Earths,2008,26(4):528-531.
    [24]姜健准,刘红梅,张明森.Ni/ZrO2催化剂的制备及甲烷分步水蒸气重整反应性能[J].化工进展,2018,37(1):112-118.JIANG J Z,LIU H M,ZHANG M S.Preparation of Ni/ZrO2catalyst and its performance in the reaction of stepwise steam reforming of methane[J].Chemical Industry and Engineering Progress,2018,37(1):112-118.
    [25]侯影飞,李力军,蒋驰,等.活性炭负载磷钨酸催化剂的制备及其催化氧化脱硫性能[J].化工进展,2017,36(11):4072-4079.HOU Y F,LI L J,JIANG C,et al.Preparation and performance of phosphotungstic acid/activated carbon catalyst for catalytic oxidative desulfurization[J].Chemical Industry and Engineering Progress,2017,36(11):4072-4079.
    [26]智佳.铈改性分子筛的制备及对水蒸气吸脱附性能的研究[D].重庆:重庆大学,2015.ZHI J.Preparation and study on the performance of water vapor adsorption and desorption on modified molecular sieves with Ce as modifier[D].Chongqing:Chongqing University,2015.
    [27]TSANG C,KIM J,MANTHIRAM A.Synthesis of manganese oxides by reduction of KMnO4with KBH4in aqueous solution[J].J.Solid.State.Chem.,1998,137(1):28-32.
    [28]WU Y,LU Y,SONG C,et al.A novel redox-precipitation method for the preparation ofα-MnO2with a high surface Mn4+concentration and its activity toward complete catalytic oxidation of o-xylene[J].Catal.Today,2013,201(1):32-39.
    [29]XIA Y,MENG L,JIANG Y,et al.Facile preparation of MnO2functionalized baker’s yeast composites and their adsorption mechanism for Cadmium[J].Chem.Eng.J.,2015,259(1):927-935.
    [30]SMIRNOV M Y,KALINKIN A V,PASHIS A V,et al.Comparative XPS study of Al2O3and CeO2sulfation in reactions with SO2,SO2+O2,SO2+H2O and SO2+O2+H2O[J].Kinet.Catal.,2003,44(4):575-583.
    [31]RODAS-GRAPAíN A,ARENAS-ALATORRE J,GóMEZ-CORTéSA,et al.Catalytic properties of a CuO-CeO2sorbentcatalyst for deSOx reaction[J].Catal.Today,2005,107/108(15):168-174.
    [32]TSENG H H,WEY M Y,FU C H.Carbon materials as catalyst supports for SO2oxidation:catalytic activity of CuO-AC[J].Carbon,2003,41(1):139-149.
    [33]XIE G,LIU Z,ZHU Z,et al.Reductive regeneration of sulfated CuO/Al2O3catalyst-sorbent in ammonia[J].Appl.Catal.B-Environ.,2003,45(3):213-221.
    [34]SUB S C,NIIYAMA H.Oxidative sorption of SO2by Cu/zeolite[J].Sekiyu Gakkaishi.,1988,31(2):147-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700