用户名: 密码: 验证码:
Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth
  • 作者:LU ; XU ; JIE ; HOU ; HAITAO ; TANG ; YUAN ; YU ; YU ; YU ; XUEWEN ; SHU ; XINLIANG ; ZHANG
  • 英文作者:LU XU;JIE HOU;HAITAO TANG;YUAN YU;YU YU;XUEWEN SHU;XINLIANG ZHANG;Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology;School of Optical and Electrical Information,Huazhong University of Science and Technology;
  • 中文刊名:GZXJ
  • 英文刊名:光子学研究(英文版)
  • 机构:Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology;School of Optical and Electrical Information,Huazhong University of Science and Technology;
  • 出版日期:2019-02-25
  • 出版单位:Photonics Research
  • 年:2019
  • 期:v.7
  • 基金:National Natural Science Foundation of China(NSFC)(11664009,61501194);; Natural Science Fund for Distinguished Young Scholars(61125501);; Natural Science Foundation of Hubei Province(2014CFA004,2015CFB231,2016CFB370);; Fundamental Research Funds for the Central Universities(HUST:2016YXMS025);; Director Fund of Wuhan National Laboratory for Optoelectronics(WNLO)
  • 语种:英文;
  • 页:GZXJ201902002
  • 页数:6
  • CN:02
  • ISSN:31-2126/O4
  • 分类号:13-18
摘要
We demonstrate a silicon-based microwave photonic filter(MPF) with flattop passband and adjustable bandwidth. The proposed MPF is realized by using a 10 th-order microring resonator(MRR) and a photodetector,both of which are integrated on a photonic chip. The full width at half-maximum(FWHM) bandwidth of the optical filter achieved at the drop port of the 10 th-order MRR is 21.6 GHz. The ripple of the passband is less than 0.3 dB, while the rejection ratio is 32 dB. By adjusting the deviation of the optical carrier wavelength from the center wavelength of the optical bandpass filter, the bandwidth of the MPF can be greatly changed. In the experiment, the FWHM bandwidth of the proposed MPF is tuned from 5.3 to 19.5 GHz, and the rejection ratio is higher than 30 dB.
        We demonstrate a silicon-based microwave photonic filter(MPF) with flattop passband and adjustable bandwidth. The proposed MPF is realized by using a 10 th-order microring resonator(MRR) and a photodetector,both of which are integrated on a photonic chip. The full width at half-maximum(FWHM) bandwidth of the optical filter achieved at the drop port of the 10 th-order MRR is 21.6 GHz. The ripple of the passband is less than 0.3 dB, while the rejection ratio is 32 dB. By adjusting the deviation of the optical carrier wavelength from the center wavelength of the optical bandpass filter, the bandwidth of the MPF can be greatly changed. In the experiment, the FWHM bandwidth of the proposed MPF is tuned from 5.3 to 19.5 GHz, and the rejection ratio is higher than 30 dB.
引文
1.J.Yao,“Microwave photonics,”J.Lightwave Technol.27,314-335(2009).
    2.J.Capmany and D.Novak,“Microwave photonics combines two worlds,”Nat.Photonics 1,319-330(2007).
    3.A.J.Seeds,“Microwave photonics,”IEEE Trans.Microw.Theory Tech.50,877-887(2002).
    4.Y.Yu,E.Xu,J.Dong,L.Zhou,X.Li,and X.Zhang,“Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation,”Opt.Express 18,25271-25282(2010).
    5.F.Jiang,Y.Yu,H.Tang,L.Xu,and X.Zhang,“Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity,”Opt.Express 24,18655-18663(2016).
    6.X.Xue,X.Zheng,H.Zhang,and B.Zhou,“Widely tunable singlebandpass microwave photonic filter employing a non-sliced broadband optical source,”Opt.Express 19,18423-18429(2011).
    7.H.Tang,Y.Yu,C.Zhang,Z.Wang,L.Xu,and X.Zhang,“Analysis of performance optimization for a microwave photonic filter based on stimulated Brillouin scattering,”J.Lightwave Technol.35,4375-4383(2017).
    8.M.Bolea,J.Mora,B.Ortega,and J.Capmany,“Highly chirped singlebandpass microwave photonic filter with reconfiguration capabilities,”Opt.Express 19,4566-4576(2011).
    9.L.Xu,X.Kong,Z.Wang,H.Tang,X.Liu,Y.Yu,J.Dong,and X.Zhang,“A tunable single passband microwave photonic filter of overcoming fiber dispersion induced amplitude fading,”IEEE Photon.J.9,5502008(2017).
    10.X.Liu,Y.Yu,H.Tang,L.Xu,J.Dong,and X.Zhang,“Silicon-oninsulator-based microwave photonic filter with narrowband and ultrahigh peak rejection,”Opt.Lett.43,1359-1362(2018).
    11.Y.Yu,H.Tang,L.Xu,X.Liu,F.Jiang,J.Dong,and X.Zhang,“Switchable microwave photonic filter between low-pass and highpass responses,”IEEE Photon.J.8,5501408(2016).
    12.B.Vidal,M.Piqueras,and J.Martí,“Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,”Opt.Lett.32,23-25(2007).
    13.Y.Stern,K.Zhong,T.Schneider,R.Zhang,Y.Ben-Ezra,M.Tur,and A.Zadok,“Tunable sharp and highly selective microwave-photonic band-pass filters based on stimulated Brillouin scattering,”Photon.Res.2,B18-B25(2014).
    14.M.Song,C.M.Long,R.Wu,D.Seo,D.E.Leaird,and A.M.Weiner,“Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency combs,”IEEE Photon.Technol.Lett.23,1618-1620(2011).
    15.T.Chen,X.Yi,L.Li,and R.Minasian,“Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,”Opt.Lett.37,4699-4701(2012).
    16.W.Li,C.Yang,L.Wang,Z.Yuan,J.Liu,M.Li,and N.Zhu,“Microwave photonic bandstop filter with wide tunability and adjustable bandwidth,”Opt.Express 23,33579-33586(2015).
    17.A.Byrnes,R.Pant,E.Li,D.-Y.Choi,C.G.Poulton,S.Fan,S.Madden,B.Luther-Davies,and B.J.Eggleton,“Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,”Opt.Express 20,18836-18845(2012).
    18.A.Choudhary,I.Aryanfar,S.Shahnia,B.Morrison,K.Vu,S.Madden,B.Luther-Davies,D.Marpaung,and B.J.Eggleton,“Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,”Opt.Lett.41,436-439(2016).
    19.C.Chauveau,P.Labeye,J.-M.Fedeli,S.Blaize,and G.Lerondel,“Study of the uniformity of 300 mm wafer through ring-resonator analysis,”in IEEE International Conference on Photonics in Switching(PS)(2012),pp.1-3.
    20.L.Chrostowski,X.Wang,J.Flueckiger,Y.Wu,Y.Wang,and S.T.Fard,“Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,”in Optical Fiber Communication Conference(2014),paper Th2A-37.
    21.W.Bogaerts,P.De Heyn,T.Van Vaerenbergh,K.De Vos,S.K.Selvaraja,T.Claes,P.Dumon,P.Bienstman,D.Van Thourhout,and R.Baets,“Silicon microring resonators,”Laser Photon.Rev.6,47-73(2012).
    22.F.Xia,M.Rooks,L.Sekaric,and Y.Vlasov,“Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,”Opt.Express 15,11934-11941(2007).
    23.P.Dong,W.Qian,H.Liang,R.Shafiiha,D.Feng,G.Li,J.E.Cunningham,A.V.Krishnamoorthy,and M.Asghari,“Thermally tunable silicon racetrack resonators with ultralow tuning power,”Opt.Express 18,20298-20304(2010).
    24.P.Dong,W.Qian,H.Liang,R.Shafiiha,N.-N.Feng,D.Feng,X.Zheng,A.V.Krishnamoorthy,and M.Asghari,“Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,”Opt.Express 18,9852-9858(2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700