用户名: 密码: 验证码:
抗除草剂转基因油菜与野芥菜的抗性回交3代子3代的适合度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fitness of Herbicide-Resistant BC_3F_4 Between Two Herbicide-Resistant Transgenic Brassica napus and Wild Brassica juncea
  • 作者:闫静 ; 王晓蕾 ; 张玉池 ; 张庆玲 ; 王建 ; 强胜 ; 宋小玲
  • 英文作者:YAN Jing;WANG XiaoLei;ZHANG YuChi;ZHANG QingLing;WANG Jian;QIANG Sheng;SONG XiaoLing;College of Life Sciences, Nanjing Agricultural University;
  • 关键词:抗草甘膦转基因油菜 ; 抗草丁膦转基因油菜 ; 野芥菜 ; 回交后代 ; 适合度
  • 英文关键词:glyphosate-resistant transgenic oilseed rape(Brassica napus);;glufosinate-resistant transgenic oilseed rape(Brassica napus);;wild Brassica juncea;;backcross generations;;fitness
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:南京农业大学生命科学学院;
  • 出版日期:2018-01-18 11:23
  • 出版单位:中国农业科学
  • 年:2018
  • 期:v.51
  • 基金:国家转基因生物新品种培育科技重大专项(2016ZX08012005-006);; 国家自然科学基金(31270579)
  • 语种:中文;
  • 页:ZNYK201801010
  • 页数:14
  • CN:01
  • ISSN:11-1328/S
  • 分类号:111-124
摘要
【目的】抗除草剂转基因油菜(Brassica napus,AACC,2n=38)的抗性基因一旦成功漂移到近缘杂草中,将会给农田杂草防除带来很大的困难。转基因油菜的近缘杂草野芥菜(wild B.juncea,AABB,2n=36)广泛分布于中国西部地区并沿长江流域扩散,因此有必要深入研究抗除草剂转基因油菜与野芥菜回交后代的适合度,为抗性基因是否能成功漂移到近缘杂草中提供试验依据。【方法】在田间以不同密度(低密度为15株/区,高密度为30株/区)单种和混种(野芥菜与回交后代以4﹕1、3﹕2、1﹕1比例混种)野芥菜及抗性回交3代子3代(抗草甘膦转基因油菜及抗草丁膦转基因油菜与野芥菜的抗性正反回交3代子3代分别表示为BC_3mF_4R、BC3p F4R和BC_3mF_4L、BC_3pF_4L,m表示以野芥菜为母本的回交后代,p表示以野芥菜为父本的回交后代),测定抗性正反回交3代子3代的营养生长(株高、茎粗、一次分枝数、地上部单株干生物量)和生殖生长(单株有效角果数、单株种子质量、角果长、每角果饱粒数)的适合度成分,并比较供试回交后代的总适合度与野芥菜的差异。【结果】在单种条件下,BC_3mF_4R和BC_3pF_4R的各适合度成分及总适合度均与野芥菜无显著差异;尽管在高密度下BC_3mF_4L和BC3p F4L的茎粗、地上部单株干生物量和单株有效角果数显著低于野芥菜,但BC_3mF_4L和BC_3pF_4L的总适合度仍与野芥菜无显著差异;因此,在单种条件下,抗草甘膦或抗草丁膦的回交3代子3代在低密度和高密度均具有与野芥菜相当的总适合度。当回交后代与野芥菜混种时,在低密度3种比例混种下,抗草甘膦和抗草丁膦的回交3代子3代的总适合度与野芥菜无显著差异;在高密度3种比例混种下,BC_3 F_4R与野芥菜的各适合度成分及总适合度无显著差异,但BC_3 F_4L的株高、茎粗、一次分枝数、地上部单株干生物量、单株有效角果数、单株种子质量及总适合度均显著低于野芥菜。相关性分析结果表明,BC_3 F_4的各适合度成分仅与种植密度相关。【结论】抗草甘膦或抗草丁膦的正反回交3代子3代都具有在野外生存定植的可能性,且抗草甘膦的回交3代子3代比抗草丁膦的回交3代子3代的可能性更大。因此,在防范转基因油菜的基因逃逸时不仅要防范转基因油菜与近缘杂草的初始杂交,而且要防范杂交后代与近缘杂草的不断回交,以免产生适合度较高的回交后代。
        【Objective】 If herbicide-resistant transgenes escape from transgenic oilseed rape(Brassica napus, AACC, 2 n=38) to their weedy relatives through pollen flow, weeds with the herbicide-resistant trait might produce new problems for weed control. Wild B. juncea(AABB, 2 n=36), relative weed of transgenic B. napus, has become a major weed of crop systems across western China, and extended eastward along the Yangtze River valley. In order to provide experimental data for whether the transgene couldsuccessfully escape to wild B. juncea, it is necessary to evaluate the fitness of backcross generation between herbicide-resistant transgenic B. napus and wild B. juncea before it is released. 【Method】Wild B. juncea and herbicide-resistant BC_3mF_4R, BC_3pF_4R and BC_3mF_4L, BC_3pF_4L(R and L denote glyphosate-and glufosinate-resistant backcross progeny obtained with glyphosate-and glufosinate-resistant transgenic B. napus, respectively. m and p denote backcross progeny obtained with wild B. juncea as maternal plants and paternal plants, respectively) were planted at low(15 plants per plot) and high density(30 plants per plot) in pure and mixed stands(wild B. juncea﹕backcross generation were 4﹕1, 3﹕2 and 1﹕1). The vegetative components(plant height, stem diameter, the first branch number/plant, above-ground dry biomass/plant) and reproductive components(silique number/plant, total seed weight/plant, silique length, seed number/silique) of these backcross generations were measured. The differences of the composite fitness between BC_3 F_4 and wild B. juncea were analyzed. 【Result】 Under pure stands, there was no significant difference in the fitness components and composite fitness of BC_3 F_4 R with that of wild B. juncea. The composite fitness of BC_3F_4L was also similar to wild B. juncea although the stem diameter, above-ground dry biomass/plant, and silique number/plant of BC_3F_4L at high density were significantly lower than that of wild B. juncea. Therefore, either glyphosate-or glufosinate-resistant BC_3F_4 was as fit as wild B. juncea regardless of density under pure stands. Under mixed stands, at low density, there was no significant difference in composite fitness of glyphosate-or glufosinate-resistant BC_3 F_4 with that of wild B. juncea. At high density, there was no significant difference in fitness components and composite fitness of BC_3 F_4 R with that of wild B. juncea regardless planting proportions. However, the plant height, stem diameter, the first branch number/plant, above-ground dry biomass/plant, silique number/plant, total seed weight/plant and composite fitness of BC_3 F_4L were significantly lower than that of wild B. juncea. The correlation analysis showed that the fitness components of BC_3 F_4 were only related to the planting density. 【Conclusion】Glyphosate-or glufosinateresistant BC_3 F_4 between glyphosate-or glufosinate-resistant transgenic B. napus and wild B. juncea have a strong survival ability and potential possibility of establishing populations in the field. Moreover, the ecological risk of gene flow is higher from glyphosate-resistant transgenic B. napus than glufosinate-resistant transgenic B. napus. Therefore, preventing gene escape from herbicide-resistant B. napus to wild B. juncea should not only prevent their initial hybrids, but also should prevent the backcross between wild B. juncea and F_1 or subsequent generations, so as not to produce higher fitness backcross generation.
引文
[1]国际农业生物技术应用服务组织.2016年全球生物技术/转基因作物商业化发展态势.中国生物工程杂志,2017,37(4):1-8.International Service for the Acquisition of Agri-biotech Applications.The global commercialization of biotech crops/transgenic crop in2016.China Biotechnology,2017,37(4):1-8.(in Chinese)
    [2]International Service for the Acquisition of Agri-biotech Applications.http://www.isaaa.org/gmapprovaldatabase/advsearch/default.asp?Crop ID=2&Trait Type ID=1&Developer ID=Any&Country ID=Any&Appro val Type ID=Any[EB/OL].[2017-09-26].
    [3]WARWICK S I,STEWART C N.Crops come from wild plants:how domestication,transgenes,and linkage together shape ferality.Crop Ferality and Volunteerism,2005,36(1):9-30.
    [4]LéGèRE A.Risks and consequences of gene flow from herbicideresistant crops:canola(Brassica napus L.)as a case study.Pest Management Science,2005,61:292-300.
    [5]PANDOLFO C E,PRESOTTO A,CARBONELL F T,URETA S,POVERENE M,CANTAMUTTO M.Transgenic glyphosate-resistant oilseed rape(Brassica napus)as an invasive weed in Argentina:detection,characterization,and control alternatives.Environment Science and Pollution Research,2016,23:24081-24091.
    [6]YOSHIMURA Y,BECKIE H J,MATSUO K.Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada.Environment Biosafety Research,2006,5(2):67-75.
    [7]KNISPEL A L,MCLACHLAN S M,VAN ACKER R C,FRIESEN LF.Gene flow and multiple herbicide resistance in escaped canola populations.Weed Science,2008,56:72-80.
    [8]SCHAFER M G,ROSS A,LONDO J P,BURDICK C,LEE E H,TRAVERS S E,VAN DE WATER P K,SAGERS C L.The establishment of genetically engineered canola populations in the U.S.PLo S ONE,2011,6(10):e25736.
    [9]J?RGENSEN R B,ANDERSEN B.Spontaneous hybridization between oilseed rape(Brassica napus)and weedy B.campestris(Brassicaceae):a risk of growing genetically modified oilseed rape.American Journal of Botany,1994,81(12):1620-1626.
    [10]SNOW A A,ANDERSEN B,J?RGENSEN R B.Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B.rapa.Molecular Ecology,1999,8(4):605-615.
    [11]BING D J,DOWNEY R K,RAKOW G F W.Hybridizations among Brassica napus,B.rapa and B.juncea and their two weedy relatives B.nigra and Sinapis arvensis under open pollination conditions in the field.Plant Breeding,1996,115:470-473.
    [12]LIU Y B,WEI W,MA K P,DARMENCY H.Backcrosses to Brassica napus of hybrids between B.juncea and B.napus as a source of herbicide-resistant volunteer-like feral populations.Plant Science,2010,179(5):459-465.
    [13]EBER F,CHèVRE A M,BARANGER A,VALL6E P,TANGUY X,RENARD M.Spontaneous hybridization between a male-sterile oilseed rape and two weeds.Theoretical and Applied Genetics,1994,88:362-368.
    [14]DARMENCY H,LEFOL E,FLEURY A.Spontaneous hybridizations between oilseed rape and wild radish.Molecular Ecology,1998,7(11):1467-1473.
    [15]GUERITAINE G,SESTER M,EBER F,CHèVRE A M,DARMENCY H.Fitness of backcross six of hybrids between transgenic oilseed rape(Brassica napus)and wild radish(Raphanus raphanistrum).Molecular Ecology,2002,11(8):1419-1426.
    [16]HALL L,TOPINKA K,HUFFMAN J,DAVIS L,GOOD A.Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B.napus volunteers.Weed Science,2000,48:688-694.
    [17]AONO M,WAKIYAMA S,NAGATSU M,KANEKO Y,NISHIZAWA T,NAKAJIMA N,TAMAOKI M,KUBO A,SAJI H.Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan.Genetically Modified Crops,2011,2(3):201-210.
    [18]JENCZEWSKI E,RONFORT J,CHèVRE A M.Crop-to-wild gene flow,introgression and possible fitness effects of transgenes.Environmental Biosafety Research,2003,2:9-24.
    [19]MIKKELSEN T R,ANDERSEN B,JORGENSEN R B.The risk of crop transgene spread.Nature,1996,380:31.
    [20]HAUSER T P,SHAW R G,?STERG?RD H.Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape(B.napus).Heredity,1998,81(4):429-435.
    [21]HAUSER T P,J?RGENSEN R B,?STERG?RD H.Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape(B.napus).Heredity,1998,81(4):436-443.
    [22]HAUSER T P,DAMGAARD C,J?RGENSEN R B.Frequencydependent fitness of hybrids between oilseed rape(Brassica napus)and weedy B.rapa(Brassicaceae).American Journal of Botany,2003,90(4):571-578.
    [23]VACHER C,WEIS A E,HERMANN D,KOSSLER T,YOUNG C,HOCHBERG M E.Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape(Brassica rapa).Theoretical and Applied Genetics,2004,109:806-814.
    [24]CHèVRE A M,EBER F,BARANGER A,RENARD M.Gene flow from transgenic crops.Nature,1997,389(6654):924.
    [25]CHèVRE A M,EBER F,BARANGER A,HUREAU G,BARRET P,PICAULT H,RENARD M.Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F1interspecific hybrids:an assessment of transgene dispersal.Theoretical and Applied Genetics,1998,97(1/2):90-98.
    [26]MERCER K L,ANDOW D A,WYSE D L,WYSE D L,SHAW R G.Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower.Ecology Letters,2007,10:383-393.
    [27]HUANGFU C,QIANG S,SONG X.Performance of hybrids between transgenic oilseed rape(Brassica napus)and wild Brassica juncea:An evaluation of potential for transgene escape.Crop Protection,2011,30(1):57-62.
    [28]CAMPBELL D R,WASTER N M.Genotype-by-environment interaction and the fitness of plant hybrids in the wild.Evolution,2001,55(4):669-676.
    [29]SIMARD M J,LéGèRE A,SéGUIN-SWARTZ G,NAIR H,WARWICK S.Fitness of double vs.single herbicide-resistant canola.Weed Science,2005,53:489-498.
    [30]CAMPBELL L G,SNOW A A,RIDLEY C E.Weed evolution after crop gene introgression:greater survival and feeundity of hybrids in a new environment.Ecology Letters,2006,9:1198-1209.
    [31]LONDO J P,BAUTISTA N S,SAGERS C L,LEE E H,WATRUD LS.Glyphosate drift promotes changes in fitness and transgene gene flow in canola(Brassica napus)and hybrids.Annals of Botany,2010,106(6):957-965.
    [32]HUANGFU C H,SONG X L,QIANG S.ISSR variation within and among wild Brassica juncea populations:implication for herbicide resistance evolution.Genetic Resources and Crop Evolution,2009,56(7):913-924.
    [33]浦惠明,戚存扣,张洁夫,傅寿仲,高建芹,陈新军,陈松,赵祥祥.转基因抗除草剂油菜对近缘作物的基因漂移.生态学报,2005,25(3):581-588.PU H M,QI C K,ZHANG J F,FU S Z,GAO J Q,CHEN X J,ZHAOXX.Studies on the gene flow from herbicide-tolerant GM rapeseed to its close relative crops.Acta Ecologica Sinica,2005,25(3):581-588.(in Chinese)
    [34]宋小玲,皇甫超河,强胜.抗草丁膦和抗草甘膦转基因油菜的抗性基因向野芥菜的流动.植物生态学报,2007,31(4):729-737.SONG X L,HUANGFU C H,QIANG S.Gene flow from glufosinate or glyphosate-tolerant oilseed rape to wild rape.Journal of Plant Ecology,2007,31(4):729-737.(in Chinese)
    [35]SONG X L,WANG Z,ZUO J,HUANGFU C H,QIANG S.Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B.juncea var.gracilis.Theoretical and Applied Genetics,2010,120(8):1501-1510.
    [36]郑爱琴,强胜,宋小玲.抗除草剂转基因油菜与野芥菜的杂交1代与5种常规栽培油菜回交后代的适合度.应用与环境生物学报,2014,20(3):337-344.ZHENG A Q,QIANG S,SONG X L.Fitness of backcross between F1(wild B.juncea×herbicide-resistant transgenic oilseed rape)and 5conventional cultivate varieties.Chinese Journal of Applied and Environmental Biology,2014,20(3):337-344.(in Chinese)
    [37]LIU Y B,DARMENCY H,JR STEWART C N,WEI W,TANG Z X,MA K P.The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea.Transgenic Research,2015,24(3):537-547.
    [38]张庆玲,王建,强胜,王晓蕾,闫静,伏建国,宋小玲.抗草甘膦转基因油菜与野芥菜回交3代子1代和子2代的适合度研究.南京农业大学学报,2017,40(3):434-443.ZHANG Q L,WANG J,QIANG S,WANG X L,Yan J,Fu J G,Song X L.Fitness of BC3F2 and BC3F3 between glyphosate-resistant transgenic oilseed rape and wild Brassica juncea.Journal of Nanjing Agricultural University,2017,40(3):434-443.(in Chinese)
    [39]RIEGER M A,LAMOND M,PRESTON C,POWLES S B,ROUSHR T.Pollen-mediated movement of herbicide resistance between commercial canola fields.Science,2002,296(5577):2386-2388.
    [40]HAYGOOD R,IVES A R,ANDOW D A.Consequences of recurrent gene flow from crops to wild relatives.Proceedings of the Royal Society of London B:Biological Sciences,2003,270:1879-1886.
    [41]MOON H S,HALFHILL M D,GOOD L L,RAYMER P L,JRSTEWART C N.Characterization of directly transformed weedy Brassica rapa and introgressed B.rapa with Bt cry1Ac and gfp genes.Plant Cell Reports,2007,26:1001-1010.
    [42]WANG W,XIA H,YANG X,XU T,SI HJ,CAI XX,WANG F,SU J,SNOW A A,LU B R.A novel 5-enolpyruvoylshikimate-3-phosphate(EPSP)synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice(Oryza sativa)without herbicide.New Phytologist,2014,202:679-688.
    [43]WILKINSON M,TEPFER M.Fitness and beyond:preparing for the arrival of GM crops with ecologically important novel characters.Environmental Biosafety Research,2009,8:1-14.
    [44]LANDBO L,J?RGENSEN R B.Seed germination in weedy Brassica campestris and its hybrids with B.napus:Implications for risk assessment of transgenic oilseed rape.Euphytica,1997,97(2):209-216.
    [45]ROACH D A,WULFF R D.Maternal effects in plants.Annual Review of Ecology and Systematics,1987,18:209-235.
    [46]CHèVRE A M,ADAMEZYK K,EBER F,HUTEAU V,CORITON O,LETANNEUR J C,LAREDO C,JENCZEWSKI E,MONOD H.Modelling gene flow between oilseed rape and wild radish.Ⅰ.Evolution of ehromosome strueture.Theoretieal and Applied Geneties,2007,114:209-221.
    [47]HALFHILL M D,SUTHERLAND J P,MOON H S,POPPY G M,WARWICK S,WEISSINGER A,RUFTY T,RAYMER P L,Jr STEWART C N.Growth,productivity,and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes.Molecular Ecology,2005,14(10):3177-3189.
    [48]马霓,张春雷,李俊,李光明.种植密度对直播油菜结实期源库关系及产量的调节.中国油料作物学报,2009,31(2):180-184.MA N,ZHANG C L,LI J,LI G M.Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed(Brassica napus L.).Chinese Journal of Oil Crop Sciences,2009,31(2):180-184.(in Chinese)
    [49]邵留东.不同播期条件下种植密度对油菜生长发育及产量的影响[D].武汉:华中农业大学,2009.SHAO L D.Effects of planting density on the development and yield of rapeseed(Brassica napus L.)under different sowing dates[D].Wuhan:Huazhong Agricultural University,2009.(in Chinese)
    [50]JOHANNESSEN M M,DAMGAARD C,ANDERSEN B A,J?RGENSEN R B.Competition affects the production of first backcross offspring on F1-hybrids,Brassica napus×B.rapa.Euphytica,2006,150:17-25.
    [51]DEVOS Y,HAILS R S,MESSéAN A,PERRY J N,SQUIRE G R.Feral genetically modified herbicide tolerant oilseed rape from seed import spills:are concerns scientifically justified?Transgenic Research,2012,21(1):1-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700