用户名: 密码: 验证码:
高应变速率下钛-钢复合板界面组织特征及变形机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interfacial microstructure and deformation mechanism of Ti-steel clad plate under high strain rate
  • 作者:江海涛 ; 吴波 ; 张韵 ; 徐慧慧 ; 田世伟
  • 英文作者:JIANG Hai-tao;WU Bo;ZHANG Yun;XU Hui-hui;TIAN Shi-wei;Institute of Engineering Technology,University of Science and Technology Beijing;
  • 关键词:钛-钢复合板 ; 高应变速率 ; 微观组织 ; 晶体取向 ; 变形机制
  • 英文关键词:Ti-steel clad;;high strain rate;;microstructure;;crystal orientation;;deformation mechanism
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:北京科技大学工程技术研究院;
  • 出版日期:2017-07-15
  • 出版单位:工程科学学报
  • 年:2017
  • 期:v.39;No.279
  • 语种:中文;
  • 页:BJKD201707013
  • 页数:7
  • CN:07
  • ISSN:10-1297/TF
  • 分类号:101-107
摘要
在高应变速率下,钛-钢复合板不同材料以不同的变形机制协调变形,结合界面起到至关重要的作用.本文分析研究了高应变速率下钛-钢复合板的界面组织特征和变形机制.结果表明:在钢侧,随着应变速率的提高,小角度(3°~10°)晶界含量增多,织构组分{112}〈241〉逐渐演变为织构{665}〈386〉和{111}〈110〉.在钛侧,随着应变速率的提高,出现了明显的形变孪晶组织,三种形变孪晶如{1121}〈1100〉拉伸孪晶、{1122}〈1123〉压缩孪晶和{1012}〈1011〉拉伸孪晶产生的难易程度不一样,变形机制由常规的"孪生变形为主"转变为"位错滑移与孪生变形共存"的复合变形模式.在结合界面处,随着应变速率的提高,需要适应由两侧产生的不同变形抗力,才能够实现连续变形而不致使材料发生破坏,其主要的协调机制依靠结合界面及附近晶粒的滑移实现变形.
        Under high-strain-rate conditions,Ti and steel in Ti-steel clad plate deformed,with the deformation compatibility mechanism playing a key role at the bonding interface.The interfacial microstructure and deformation mechanism of Ti-steel clad plate under high strain were investigated in this paper.The results show that,for the steel side,with increasing strain rate,the number of small-angle(3°-10°) grain boundaries increases and texture component { 1 12}〈2 41〉gradually evolves into textures {6 65}〈38 6〉and {111}〈1 10〉.For the Ti side,with increasing strain rate,deformation twins appear.Different deformation twins such as tensile twin {11 21}〈1 100〉,compression twin {11 22} 〈11 23〉,and tensile twin {10 12}〈10 11 〉are produced.The deformation mechanism of the Ti side at high strain rate transforms from a conventional "twin deformation" mode to the compound deformation mode "coexistence of dislocation slip and twin deformation." With the increase of strain rate,the bonding interface would coordinate the different deformation resistances of both sides,to achieve a continuous deformation without any materials damage.The main coordination mechanism relies on the bonding interface and the slip of adjacent grains.
引文
[1]Yan L.Behaviotsard applications of Ti/Steel composite sheets.China Titanium Ind,2003(3):12(闫力.钛钢复合板的特点及应用领域.中国钛业,2003(3):12)
    [2]Wang Y H,You J,Shi C G.Study of bonding interface of explosive welding and rolling cladding plate.J PLA Univ Sci Technol,2002,3(6):43(王耀华,尤峻,史长根.爆炸焊接轧制复合板的结合界面研究.解放军理工大学学报(自然科学版),2002,3(6):43)
    [3]Liu J,Xie G L,Zhang K.Mechanical properties of high boron alloyed stainless steel composite plate.J Mater Eng,2013(6):25(刘靖,解国良,张可.高硼不锈钢复合板力学性能研究.材料工程,2013(6):25)
    [4]Liu J X,Zhao A M,Jiang H T,et al.Microstructure features of the steel side in TA2-Q235B explosive clad plates.J Univ Sci Technol Beijing,2012,34(6):671(刘继雄,赵爱民,江海涛,等.TA2--Q235B爆炸复合板钢侧组织特征.北京科技大学学报,2012,34(6):671)
    [5]Qin H.Research of Twinning Mechanism for Polycrystal Pure Titanium Deformed at Room Temperature at Various Strain Rates[Dissertation].Chongqing:Chongqing University,2014(秦洪.多晶纯钛室温下不同应变速率塑性变形的孪生形变机制研究[学位论文].重庆:重庆大学,2014)
    [6]Akhtar A.Basal slip and twinning inα-titanium single crystals.Metall Trans A,1975,6(5):1105
    [7]Choi S H,Shin E J,Seong B S.Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression.Acta Mater,2007,55(12):4181
    [8]Li G Q,Chen K,Jiang S C,et al.Research on high temperature Q345 steel material performance test.Build Struct,2001,31(1):53(李国强,陈凯,蒋首超,等.高温下Q345钢的材料性能试验研究.建筑结构,2001,31(1):53)
    [9]Dai Q F,Song R B,Fan W Y,et al.Behaviour and mechanism of strain hardening for dual phase steel DP1180 under high strain rate deformation.Acta Metall Sin,2012,48(10):1160(代启锋,宋仁伯,范午言,等.DP1180双相钢在高应变速率变形条件下应变硬化行为及机制.金属学报,2012,48(10):1160)
    [10]Peng W A.Rolling of Ti-Steel clad plate.Titanium Ind Prog,1991(5):7(彭文安.轧制钛钢复合板的新进展.钛工业进展,1991(5):7)
    [11]Dong C W,Li Y F,Ren X P.Joint interface characteristics of TA1/Q235 clad plates manufactured by accumulative roll-bonding.J Univ Sci Technol Beijing,2008,30(3):249(董成文,李艳芳,任学平.TA1/Q235钢复合板累积叠轧焊界面特性.北京科技大学学报,2008,30(3):249)
    [12]Liu J X,Zhang H Y,Guo J L,et al.Effects of interfacial intermetallic compounds on mechanical behaviors of titanium clad steel plates.China Titanium Ind,2014(2):24(刘继雄,张杭永,郭佳林,等.界面金属间化合物对钛钢复合板力学行为的影响.中国钛业,2014(2):24)
    [13]Chichili D R,Ramesh K T,Hemker K J.The high-strain-rate response of alpha-titanium:experiments,deformation mechanisms and modeling.Acta Mater,1998,46(3):1025
    [14]Wang T B,Li B L,Li M,et al.Effects of strain rates on deformation twinning behavior inα-titanium.Mater Charact,2015,106:218
    [15]Gao L Q,Zhu J H,Li H,et al.Effects of high strain rate and low temperature on mechanical properties of TA2.Rare Met Mater Eng,2008,37(6):1051(高灵清,朱金华,李慧,等.高应变速率及低温对工业纯钛力学性能的影响.稀有金属材料与工程,2008,37(6):1051)
    [16]Han L Q,Wang Z D,Lin G B,et al.Investigation on microstructure and property of TA2/316L composite plate prepared by explosive welding.Trans Mater Heat Treat,2008,29(1):107(韩丽青,王自东,林国标,等.爆炸复合TA2/316L板的组织和性能研究.材料热处理学报,2008,29(1):107)
    [17]Liu J X,Zhao A M,Jiang H T,et al.In-situ SEM observation on titanium clad steel plates in the bending process.J Univ Sci Technol Beijing,2012,34(4):424(刘继雄,赵爱民,江海涛,等.钛钢复合板弯曲过程的扫描电镜原位观察.北京科技大学学报,2012,34(4):424)
    [18]Ha J S,Hong S I.Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures.Mater Sci Eng A,2016,651:805
    [19]Sudha C,Prasanthi T N,Paul V T,et al.Assessment of mechanical property of Ti-5Ta-2Nb and 304L SS explosive clad and correlation with microstructure.Procedia Eng,2014,86:42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700