用户名: 密码: 验证码:
页岩储集层微观渗流的微尺度效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microscale effect of microvadose in shale reservoirs
  • 作者:宁正福 ; 王波 ; 杨峰 ; 曾彦 ; 陈进娥 ; 张廉
  • 英文作者:Ning Zhengfu;Wang Bo;Yang Feng;Zeng Yan;Chen Jin'e;Zhang Lian;MOE Key Laboratory of Petroleum Engineering in China University of Petroleum;State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum;Research Institute,BGP INC.,China National Petroleum Corporation;
  • 关键词:有机质 ; 纳米孔隙 ; 格子Boltzmann方法 ; 微尺度效应 ; 边界滑移速度
  • 英文关键词:organic matter;;nanopore;;Lattice Boltzmann Method;;micro-scale effect;;boundary slip velocity
  • 中文刊名:SKYK
  • 英文刊名:Petroleum Exploration and Development
  • 机构:中国石油大学(北京)石油工程教育部重点实验室;中国石油大学(北京)油气资源与探测国家重点实验室;东方地球物理公司研究院;
  • 出版日期:2014-06-10 11:41
  • 出版单位:石油勘探与开发
  • 年:2014
  • 期:v.41;No.241
  • 基金:国家自然科学基金项目“页岩气储层吸附解吸机理研究”(51274214);; 教育部科学技术研究重大计划“页岩气流动机理与产能预测模型研究”(311008);; 教育部博士点基金项目“页岩储层多尺度耦合渗流规律研究”(20120007110012)
  • 语种:中文;
  • 页:SKYK201404009
  • 页数:8
  • CN:04
  • ISSN:11-2360/TE
  • 分类号:65-72
摘要
页岩有机质中存在大量纳米孔隙,气体在纳米孔隙中的流动存在微尺度效应,宏观流体流动规律难以准确描述其流动行为。考虑气体分子在有机质孔隙中的滑脱效应、扩散和吸附解吸作用,用格子Boltzmann方法模拟气体在有机质纳米孔道中的流动。结果表明:气体在有机质纳米孔道中存在压缩效应,压缩效应导致压力沿纳米孔道呈非线性分布,且孔道两端的压差越大,非线性程度越大。随着Knudsen数增大,稀薄效应增强,减弱了由压缩效应引起的非线性程度。气体在纳米孔道中的边界滑移速度随着进出口压力比和Knudsen数的增大而增大,并且在垂直于孔道方向上的速度不为零,加剧了孔道中气体分子与边界分子的动能交换。滑移效应和吸附解吸效应均对气体在页岩有机质孔道中的质量流量有重要影响。
        Gas flow in nano-pores which are abundant in the organic matter of shale can lead to micro-scale effect that can't be described by flowing law of macro fluid.The Lattice Boltzmann Method was applied to simulate gas flow in the nano-channels of organic matter and to investigate the slippage effect,diffusion effect and adsorption/desorption effect.The simulation result shows that the compressibility effect of gas leads to the nonlinear pressure distribution along the channels,and the larger the pressure difference,the more serious the nonlinear distribution.To some extent,the enhancement of rarefaction effect weakens nonlinear degree caused by the compressibility effect.With the increase of Knudsen number and the pressure differential on the two ends,the slip velocity on the boundary increases,and the velocity vertical to the channel is not zero,increasing the exchange of kinetic energy between gas molecules in channels and molecules at boundary.Slippage effect and adsorption/desorption effect have a significant contribution to the gas mass flow in nano-channels of organic matter.
引文
[1]陈新军,包书景,侯读杰,等.页岩气资源评价方法与关键参数探讨[J].石油勘探与开发,2012,39(5):566-571.Chen Xinjun,Bao Shujing,Hou Dujie,et al.Methods and key parameters of shale gas resources evaluation[J].Petroleum Exploration and Development,2012,39(5):566-571.
    [2]邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.Zou Caineng,Zhu Rukai,Bai Bin,et al.First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J].Acta Petrologica Sinica,2011,27(6):1857-1864.
    [3]Sondergeld C H,Ambrose R J,Rai C S,et al.Micro-structural studies of gas shales[R].SPE 131771,2010.
    [4]白斌,朱如凯,吴松涛,等.利用多尺度CT成像表征致密砂岩微观孔喉结构[J].石油勘探与开发,2013,40(3):329-333.Bai Bin,Zhu Rukai,Wu Songtao,et al.Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation,Ordos Basin[J].Petroleum Exploration and Development,2013,40(3):329-333.
    [5]Roy S,Raju R,Chuang H F,et al.Modeling gas flow through microchannels and nanopores[J].Journal of Applied Physics,2003,93(8):4870-4879.
    [6]Guo Zhaoli,Zhao T S,Shi Yong.Physical symmetry,spatial accuracy,and relaxation time of the lattice Boltzmann equation for microgas flows[J].Journal of Applied Physics,2006,99:074903-1-074903-8.
    [7]Sofonea V,Sekerka R F.Boundary conditions for the upwind finite difference Lattice Boltzmann model:Evidence of slip velocity in micro-channel flow[J].Journal of Computational Physics,2005,207(2):639-629.
    [8]Lee T,Lin C L.A characteristic Galerkin method for discrete Boltzmann equation[J].Journal of Computational Physics,2001,171(1):336-356.
    [9]Zhang Yonghao,Qin Rongshan,Emerson D R.Lattice Boltzmann simulation of rarefied gas flows in microchannels[J].Physical Review E,2005,71(4):47702.
    [10]Arkilic E B,Schmidt M A,Breuer K S.Gaseous slip flow in long microchannels[J].Journal of Microelectromechanical System,1997,6(2):167-178.
    [11]Verhaeghe F,Luo Lishi,Blanpain B.Lattice Boltzmann modeling of microchannel flow in slip flow regime[J].Journal of Computational Physics,2009,228(1):147-157.
    [12]Shan Xiaowen,Yuan Xuefeng,Chen Hudong.Kinetic theory representation of hydrodynamics:A way beyond the Navier-Stokes equation[J].Journal of Fluid Mechanics,2006,550:413-441.
    [13]Bird G A.Monte Carlo simulation of gas flows[J].Annual Review of Fluid Mechanics,1978,10(1):11-31.
    [14]窦宏恩,杨旸.低渗透油藏流体渗流再认识[J].石油勘探与开发,2012,39(5):633-640.Dou Hongen,Yang Yang.Further understanding on fluid flow through multi-porous media in low permeability reservoirs[J].Petroleum Exploration and Development,2012,39(5):633-640.
    [15]Wang F P,Reed R M.Pore networks and fluid flow in gas shales[R].SPE 124253,2009.
    [16]闫宝珍,王延斌,倪小明.地层条件下基于纳米级孔隙的煤层气扩散特征[J].煤炭学报,2008,33(6):658-660.Yan Baozhen,Wang Yanbin,Ni Xiaoming.Coal bed methane diffusion characters based on nano-scaled pores under formation conditions[J].Journal of China Coal Society,2008,33(6):658-660.
    [17]郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2009.Guo Zhaoli,Zheng Chuguang.Theory and applications of lattice Boltzmann method[M].Beijing:Science Press,2009.
    [18]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M].北京:科学出版社,2008.He Yaling,Wang Yong,Li Qing.Lattice Boltzmann method:Theory and applications[M].Beijing:Science Press,2008.
    [19]Dongari N,Agrawal A,Agrawal A.Analytical solution of gaseous slip flow in long microchannels[J].International Journal of Heat and Mass Transfer,2007,50:3411-3421.
    [20]Lim C Y,Shu C,Niu X D,et al.Application of lattice Boltzmann method to simulate microchannel flows[J].Physics of Fluids,2002,14(7):2299-2308.
    [21]Zhang Y H,Qin R S,Sun Y H,et al.Gas flow in micro channels:A lattice Boltzmann method approach[J].Journal of Statistical Physics,2005,21(1/2):257-267.
    [22]Tang G H,Tao W Q,He Y L.Lattice Boltzmann method for simulating gas flow in microchannels[J].International Journal of Modern Physics C,2004,15(2):335-347.
    [23]Perumal D A,Krishna V,Sarvesh G,et al.Numerical simulation of Gaseous microflows by lattice Boltzmann method[J].International Journal of Recent Trends in Engineering,2009,1(5):15-20.
    [24]Chen Xinjun,Bao Shujing,Hou Dujie,et al.Methods and key parameters of shale gas resources evaluation[J].Petroleum Exploration and Development,2012,39(5):566-571.
    [25]Fathi E,Akkutlu I Y.Lattice Boltzmann method for simulation of shale gas transport in kerogen[J].SPEJ,2013,18(1):27-37.
    [26]赵汉中.微细圆管中气体流动的稀薄效应和可压缩效应[J].华中科技大学学报:自然科学版,2001,29(10):97-98.Zhao Hanzhong.The rarefaction and compressibility effects of the gas flow in circular microtube[J].Journal of Huazhong University of Science and Technology:Nature Science,2001,29(10):96-98.
    [27]聂德明,郭晓辉,林建忠.微通道中气体流动的格子Boltzmann数值模拟[J].计算物理,2010,27(3):390-395.Nie Deming,Guo Xiaohui,Lin Jianzhong.Lattice-Boltzmann method for gas flow in microchannels[J].Chinese Journal of Computational Physics,2010,27(3):390-395.
    [28]王华龙,柴振华,郭照立.致密多孔介质中气体渗流的格子Boltzmann模拟[J].计算物理,2009,26(3):389-395.Wang Hualong,Chai Zhenhua,Guo Zhaoli.Lattice Boltzmann simulation of gas transfusion in compact porous media[J].Chinese Journal of Computational Physics,2009,26(3):389-395.
    [29]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5):576-577.Tao Ran,Quan Xiaobo,Xu Jianzhong.Several questions in research of micro scale flow[J].Journal of Engineering Thermophysics,2001,22(5):576-577.
    [30]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):1-4.He Xueqiu,Nie Baisheng.Diffusion mechanism of porous gases in coal seams[J].Journal of China University of Mining&Technology,2001,30(1):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700