用户名: 密码: 验证码:
不同钼基催化剂抑焦效果的对比分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative Analysis of Coke Suppression Effect of Mo-Based Catalysts
  • 作者:张海洪 ; 辛靖 ; 韩龙年 ; 田义斌 ; 侯章贵
  • 英文作者:Zhang Haihong;Xin Jing;Han Longnian;Tian Yibin;Hou Zhanggui;CNOOC Research Institute of Refining and Petrochemicals;
  • 关键词:悬浮床加氢 ; 水溶性钼基催化剂 ; 油溶性钼基催化剂 ; 高压釜评价 ; 生焦
  • 英文关键词:Slurry-bed hydrocracking;;Water-soluble molybdenum catalyst;;Oil-soluble molybdenum catalyst;;Autoclave evaluation;;Coke
  • 中文刊名:SYHX
  • 英文刊名:Journal of Petrochemical Universities
  • 机构:中海油炼油化工科学研究院;
  • 出版日期:2019-01-14 07:01
  • 出版单位:石油化工高等学校学报
  • 年:2019
  • 期:v.32;No.135
  • 基金:中国海油石油集团有限公司科技研发项目(CNOOC-KJ125ZDXM15LH001LH2013)
  • 语种:中文;
  • 页:SYHX201901004
  • 页数:5
  • CN:01
  • ISSN:21-1345/TE
  • 分类号:21-25
摘要
采用自制的水溶性钼基催化剂和油溶性钼基催化剂原位分解制备了MoS2(标记为MoS2-1和MoS2-2),并对两类MoS2进行XRD分析、粒度分析和SEM形貌分析表征以及反应性能评价,以探讨在悬浮床加氢反应中的抑焦效果。高压釜评价结果表明,加入油溶性催化剂时的转化率和生焦量均优于加入水溶性催化剂。XRD分析结果表明,MoS2-1的结晶状态较差,MoS2-2的各特征峰尖锐,结晶状态良好,可以活化氢分子为活化氢,降低生焦率。SEM和粒度分析结果表明,MoS2-2的直径以1~5μm为主,MoS2-1直径以6~10μm为主,MoS2-2粒径较小,粒度分布比较均匀,可提供更多的加氢活性中心提高反应的转化率。
        MoS2(labeled as MoS2-1 and MoS2-2) was prepared by in-situ decomposition of water-soluble molybdenum-based catalyst and oil-soluble molybdenum-based catalyst.In order to explore the effect of two types of molybdenum catalyst in slurry-bed hydrocracking and preliminary theoretical analysis, the catalysts were characterized by XRD analysis, particle size analysis, SEM analysis and evaluation of reaction performance. Autoclave evaluation results showed that, compared with adding oil-soluble catalysts, the transformation rate and coke yield rate were better than that by adding water-soluble catalyst.The results of XRD analysis showed that the crystalline state of MoS2-1 was poor.The characteristic peaks of MoS2-2 were sharp and the crystalline state was good,so the hydrogen could be activated to activate hydrogen and the coke yield rate was reduced.The results of SEM analysis and particle size analysis showed that the MoS2-2 was smaller and the diameter was mainly 1~5 μm.MoS2-1 was larger and the diameter was mainly 6~10 μm.MoS2-2 catalyst had smaller particle size and uniform particle size distribution which could provide more hydrogenation active centers to improve the conversion rate of the reaction.
引文
[1] Alberto D B,Nicoletta P,Mario M.Upgrading heavy oil using slurry processes[J].Chemtech.,1995,25(11):35-43.
    [2] Alberto D B,Nicoletta P.Thermal catalytic hydroconversion of heavy petroleum cuts with dispersed catalyst[J].Appl.Catal.,1993,94(1):1-16.
    [3]刘金东,贺新,辛丁业.四组分在渣油加氢体系前后的转变规律[J].辽宁石油化工大学学报,2017,37(5):13-16.Liu J D,He X,Xin D Y,et al.Change law of four fractions in residue hydrotreating catalyst grading system[J]. Journal of Liaoning Shihua University,2017,37(5):13-16.
    [4]吴青.悬浮床加氢裂化——劣质重油直接深度高效转化技术[J].炼油技术与工程,2014,44(2):1-9.Wu Q.Suspended-bed hydrocracking process:A deep high-efficiency conversion process in rapid development for processing low-quality heavy oils[J].Petroleum Refinery Engineering,2014,44(2):1-9.
    [5]刘美,刘金东,张树广,等.悬浮床重油加氢裂化技术进展[J].应用化工,2017,46(12):2435-2440.Liu M,Liu J D,Zhang S G,et al.Advances of heavy oil hydrocracking in suspended bed[J].Applied Chemical Industry,2017,46(12):2435-2440.
    [6]邓文安,田广华,张数义,等.复配助剂对渣油悬浮床加氢裂化反应的抑焦作用[J].石油学报(石油加工),2009,25(6):830-834.Deng W A,Tian G H,Zhang S Y,et al. The effect of compound adjuvant on coke formation in residue slurry-bed hydrocracking[J].Acta Petrolei Sinica(Petroleum Processing Section),2009,25(6):830-834.
    [7]金学成,项曙光.柴油加氢装置过程模拟与节能研究[J].当代化工,2017,46(12):2538-2542.Jin X C,Xing S G. Process simulation and energy saving method of diesel hydrotreating unit[J]. Contemporary Chemical Industry,2017,46(12):2538-2542.
    [8]李传,石斌,李慎伟,等.克拉玛依常压渣油悬浮床加氢裂化反应胶体性质[J].石油化工高等学校学报,2006,19(1):34-39.Li C,Shi B,Li S W,et al,Clolloidal properties during slurry-bed hydrocracking reaction of kelamay atmospheric residue[J].Journal of Petrochemical Universities,2006,19(1):34-39.
    [9]杨涛,黄传峰,邓文安.油溶性催化剂在渣油悬浮床加氢反应中的加氢抑焦作用[J].石油炼制与化工,2016,47(5):51-56.Yang T,Huang C F,Deng W A.Hydrogenation activity and coke restraining ability of oil-soluble catalysts for residue slurrybed hydrocracking[J].Petroleum Processing and Petrochemical,2016,47(5):51-56.
    [10]刘东,邓文安,周家顺,等.水溶性分散型加氢催化剂催化作用的研究[J].燃料化学学报,2004,32(4):461-465.Liu D,Deng W A,Zhou J S,et al.Study on the water-soluble dispersed catalyst of slurry phase hydrocracking[J].Journal of Fuel Chemistry and Technology,2004,32(4):461-465.
    [11] Wiehe I,Torris G.Design of synthetic dispersants for asphaltenes[J].Petroleum Science and Technology,2003,21(40):527-536.
    [12]邓文安,王磊,李传,等.马瑞常压渣油悬浮床加氢裂化反应生焦过程[J].石油学报(石油加工),2017,33(2):291-302.Deng W A,Wang L,Li C,et al.The coke formation process during slurry-bed hydrocracking of merey atmospheric residue[J].Acta Petrolei Sinica(Petroleum Processing Section),2017,33(2):291-302.
    [13]宋官龙,赵德智,吴青,等.反应条件对渣油悬浮床加氢裂化反应的影响[J].石油化工高等学校学报,2017,30(5):17-21.Song G L,Zhao D Z,Wu Q,et al. Effect of reaction conditions on hydrocracking reaction of slurry bed[J]. Journal of Petrochemical Universities,2017,30(5):17-21.
    [14]张数义,邓文安,罗辉,等.渣油悬浮床加氢裂化反应机理[J].石油学报(石油加工),2009,25(2):145-149.Zhang S Y,Deng W A,Luo H,et al. Mechanism of slurry phase hydrocracking residue reaction[J]. Acta Petrolei Sinica(Petroleum Processing Section),2009,25(2):145-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700