用户名: 密码: 验证码:
基于多轴同步控制的微尺度双向加载实验系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Micro-scaled biaxial loading test system based on multi-axis synchronous control
  • 作者:熊晶洲 ; 万敏 ; 孟宝 ; 赵越超 ; 吴向东
  • 英文作者:XIONG Jingzhou;WAN Min;MENG Bao;ZHAO Yuechao;WU Xiangdong;School of Mechanical Engineering and Automation,Beihang University;
  • 关键词:微细成形 ; 屈服强化行为 ; 微尺度双向加载系统 ; 虚拟主轴法 ; 同步控制
  • 英文关键词:microforming;;yielding and hardening behavior;;micro-scaled biaxial loading system;;virtual axis method;;synchronous control
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:北京航空航天大学机械工程及自动化学院;
  • 出版日期:2018-07-26 15:29
  • 出版单位:北京航空航天大学学报
  • 年:2019
  • 期:v.45;No.311
  • 基金:国家自然科学基金(51605018)~~
  • 语种:中文;
  • 页:BJHK201901020
  • 页数:9
  • CN:01
  • ISSN:11-2625/V
  • 分类号:177-185
摘要
针对目前微细成形中材料屈服、强化行为实验研究的不足,提出通过建立多轴同步控制的微尺度双向加载实验系统,实现超薄板在复杂加载路径下的性能表征测试。双向加载实验系统基于四轴独立驱动的硬件组成和上、下位机分布式控制策略,采用数字散斑测量(DIC)计算实验过程的应变。通过建立交流永磁同步电机(PMSM)控制模型,辨识了速度闭环控制参数。在非线性PID控制方法实现单轴位置闭环控制的基础上,基于虚拟主轴法实现了不同位移/载荷比例条件下的四轴同步运动。双向加载实验结果表明:同步控制精度满足位移小于等于0. 02 mm、载荷小于等于0. 05 k N的要求,可用于超薄板微尺度屈服和强化行为的实验研究。
        Aimed at the currently insufficient experimental condition for the research on yielding and hardening behavior in microforming of ultrathin sheets,a micro-scaled biaxial loading test system was presented,which can achieve complex loading paths. The system is characterized with four independent driving axes in hardware,coupled with separated upper computer and lower computer in software structure. The digital image correlation( DIC) method is adopted to capture deformation strain in the biaxial tension process. The control model of permanent magnet synchronous motor( PMSM) was first established,and the control parameters of speed closed loop were identified. The control accuracy of single-axis position closed-loop is significantly improved by using the nonlinear PID control method,and the four-axis synchronous control under diverse displacement/load ratios is realized on the basis of virtual axis method. The biaxial loading experiment reveals that the system satisfies the requirements of displacement synchronization error within 0. 02 mm and load synchronization error within 0. 05 kN. The developed system can thus be used for experimental research on yielding and hardening behavior of ultrathin sheet.
引文
[1]SCHROERS J,PHAM Q,DESAI A.Thermoplastic forming of bulk metallic glass-A technology for MEMS and microstructure fabrication[J].Journal of Microelectromechanical Systems,2007,16(2):240-247.
    [2]MENG B,FU M W,FU C M,et al.Ductile fracture and deformation behavior in progressive microforming[J].Materials&Design,2015,83:14-25.
    [3]RAZALI A R,QIN Y.A review on micro-manufacturing,microforming and their key issues[J].Procedia Engineering,2013,53(7):665-672.
    [4]MANABE K,SHIMIZU K,KOYAMA T,et al.Validation of FEsimulation based on surface roughness model in micro-deep drawing[J].Journal of Materials Processing Technology,2008,204(1-3):89-93.
    [5]YEH F H,LI C L,LU Y H.Study of thickness and grain size effects on material behavior in micro-forming[J].Journal of Materials Processing Technology,2008,201(1-3):237-241.
    [6]FU M W,WANG J L,KORSUNSKY A M.A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components[J].International Journal of Machine Tools&Manufacture,2016(109):94-125.
    [7]MENG B,FU M W.Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening[J].Materials&Design,2015,83:400-412.
    [8]FU M W,CHAN W L.A review on the state-of-the-art microforming technologies[J].International Journal of Advanced Manufacturing Technology,2013,67(9-12):2411-2437.
    [9]DUBOS P A,FLEURIER G,HUG E.An experimental investigation of the size effects in forming processes of high-purity thin metallic sheets[C]∥Materials Science Forum,2017:459-464.
    [10]PENG L F,XU Z T,FU M W,et al.Forming limit of sheet metals in meso-scale plastic forming by using different failure criteria[J].International Journal of Mechanical Sciences,2017,120:190-203.
    [11]HANNON A,TIERNAN P.A review of planar biaxial tensile test systems for sheet metal[J].Journal of Materials Processing Technology,2008,198(1):1-13.
    [12]BANABIC D,BARLAT F,CAZACU O,et al.Advances in anisotropy and formability[J].International Journal of Material Forming,2010,3(3):165-189.
    [13]CHEN H,YE D,CHE R.High speed deformation measurement using digital speckle correlation method[C]∥27th International Congress on High-Speed Photography and Photonics.Bellingham:SPIE,2007:62791O.
    [14]陈华.基于数字散斑相关方法的视觉变形测量技术研究[D].哈尔滨:哈尔滨工业大学,2008:15-22.CHEN H.Study of vision deformation measurement technologies based on digital speckle correlation method[D].Harbin:Harbin Institute of Technology,2008:15-22(in Chinese).
    [15]MA S P,JI G C.Digital speckle correlation method improved by genetic algorithm[J].Acta Mechanica Solida Sinica,2003,16(4):366-373.
    [16]汪海波,周波,方斯琛.永磁同步电机调速系统的滑模控制[J].电工技术学报,2009,24(9):71-77.WANG H B,ZHOU B,FANG S C.PMSM sliding mode control system based on exponential reaching law[J].Transactions of China Electrotechnical Society,2009,24(9):71-77(in Chinese).
    [17]陈鹏展.交流伺服系统控制参数自整定策略研究[D].武汉:华中科技大学,2010:19-27.CHEN P Z.Study on the self-tuning strategy of control parameters for AC servo system[D].Wuhan:Huazhong University of Science and Technology,2010:19-27(in Chinese).
    [18]王述彦,师宇,冯忠绪.基于模糊PID控制器的控制方法研究[J].机械科学与技术,2011,30(1):166-172.WANG S Y,SHI Y,FENG Z X.A method for controlling a loading system based on a fuzzy PID controller[J].Mechanical Science and Technology for Aerospace Engineering,2011,30(1):166-172(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700