用户名: 密码: 验证码:
费-托合成钴基催化剂研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent advances in cobalt-based catalysts for Fischer-Tropsch synthesis
  • 作者:郝青青 ; 宋永红 ; 赵永华 ; 张启俭 ; 刘昭铁 ; 刘忠文
  • 英文作者:HAO Qingqing;SONG Yonghong;ZHAO Yonghua;ZHANG Qijian;LIU Zhaotie;LIU Zhongwen;School of Chemical Engineering, Northwest University;Research Center of Applied Catalysis, Shaanxi Normal University;School of Chemistry & Environmental Engineering,Liaoning University of Technology;
  • 关键词:费-托合成 ; 合成气 ; 催化剂 ; 失活 ; 烧结 ; 尺寸效应 ; 钴-载体相互作用
  • 英文关键词:Fischer-Tropsch synthesis;;syngas;;catalyst;;deactivation;;sintering;;particle-size effect;;Co-support interactions
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:西北大学化工学院;陕西师范大学应用催化研究中心;辽宁工业大学化学与环境工程学院;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(20876095,21406179);; 中央高校基本科研业务费专项资金(GK201601005);; 中国博士后科学基金(2016M600810,2017T100767)
  • 语种:中文;
  • 页:HGJZ201901025
  • 页数:13
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:298-310
摘要
尽管Co基费-托(Fischer-Tropsch,FT)合成催化剂相对较为成熟,但高活性、高稳定性以及高α-烯烃等特定产物选择性Co基催化剂的研发,依然是FT合成过程更大规模工业化应用面临的重大挑战。本文总结分析了Co基FT合成催化剂的结构敏感性、分散度与还原度矛盾、催化剂失活以及产物选择性调控等方面的最新进展和动向。根据Co的尺寸、晶相结构及Co与载体间相互作用影响催化剂活性的规律,认为除通过调变金属载体间相互作用以提高Co的分散度和还原度外,设计制备具有更高本征活性的hcp相Co是提高其质量比活性的有效策略;而进一步提高工业Co基催化剂寿命的关键是抑制Co的烧结和积炭。最后,总结了合成气一步高选择性合成液体燃料的新进展,认为提高双功能催化剂的稳定性以及解决工程化制备问题是实现该过程工业化应用的关键。
        The Fischer-Tropsch(FT) synthesis is a key technology for producing high quality ultra-clean fuels from syngas produced from coal, natural gas, and biomass. Cobalt is one of the most effective and industrially important catalysts for the FT synthesis due to its high activity, high resistance to deactivation,and low water-gas shift activity. Although the cobalt-based catalysts for the industrial application havebeen developed, the large-scale and wide application of Co-based catalysts is still in need of developing amore efficient catalyst with a higher activity, improved stability, and higher selectivity to desired productssuch as α-olefins. In this work, the recent advances on the study of Co-based catalysts for FT synthesis,i.e., the structure sensitivity, breaking the dependence between the dispersion and extent of reduction ofcobalt, deactivation mechanism, and tuning the product selectivity, are reviewed. The effects of Coparticle size, crystal structure, and the interactions between Co and support on the FT activity areanalyzed. Besides increasing the Co dispersion and extent of reduction through adjusting the interactionsbetween Co and the support, the controlled synthesis of Co-based catalysts with a hexagonal close packed(hcp) phase, of which a higher intrinsic activity for FT synthesis has been revealed, is an effective strategy to improve the mass-specific activity of Co catalysts. The resistance to the sintering of Co and cokede position is revealed as the key factor for improving the lifetime of Co-based catalysts for FT synthesis.Finally, recent developments of bifunctional FT catalysts for one-step synthesis of clean liquid fuels from syngas are highlighted, and the further developing trends are to improve the stability of bifunctional catalysts and to solve the engineering problems for large-scale manufacture of the catalyst.
引文
[1]相宏伟,杨勇,李永旺.煤炭间接液化:从基础到工业化[J].中国科学:化学, 2014, 44(12):1876-1892.XIANG H W, YANG Y, LI Y W. Indirect coal-to-liquidstechnology from fundamental research to commercialization[J].Scientia Sinica Chimica, 2014, 44(12):1876-1892.
    [2]温晓东,杨勇,相宏伟,等.费托合成铁基催化剂的设计基础:从理论走向实践[J].中国科学:化学, 2017, 47(11):1298-1311.WEN X D, YANG Y, XIANG H W, et al. The design principle ofiron-based catalysts for Fischer-Tropsch synthesis:from theory topractice[J]. Scientia Sinica Chimica, 2017, 47(11):1298-1311.
    [3]孙启文,吴建民,张宗森,等.煤间接液化技术及其研究进展[J].化工进展, 2013, 32(1):1-12.SUN Q W, WU J M, ZHANG Z S, et al. Indirect coal liquefactiontechnology and its research progress[J]. Chemical Industry andEngineering Progress, 2013, 32(1):1-12.
    [4] IGLESIA E, SOLED S L, FIATO R A. Fischer-Tropsch synthesison cobalt and ruthenium. Metal dispersion and support effects onreaction rate and selectivity[J]. Journal of Catalysis, 1992, 137:212-224.
    [5] IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Applied Catalysis A:General,1997, 161:59-78.
    [6] BEZEMER G L, BITTER J H, KUIPERS H P, et al. Cobaltparticle size effects in the Fischer-Tropsch reaction studied withcarbon nanofiber supported catalysts[J]. Journal of AmericanChemical Society, 2006, 128:3956-3964.
    [7] PRIETO G, MARTíNEZ A, CONCEPCIóN P, et al. Cobalt particle size effects in Fischer-Tropsch synthesis:structural andin situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts[J]. Journal of Catalysis,2009, 266:129-144.
    [8] MARTíNEZ A, PRIETO G. Breaking the dispersion-reducibilitydependence in oxide-supported cobalt nanoparticles[J]. Journal ofCatalysis, 2007, 245:470-476.
    [9] MELAET G, LINDEMAN A E, SOMORJAI G A. Cobalt particlesize effects in the Fischer-Tropsch synthesis and in thehydrogenation of CO2studied with nanoparticle model catalysts onsilica[J]. Topics in Catalysis, 2014, 57:500-507.
    [10] HERRANZ T, DENG X, CABOT A, et al. Influence of the cobaltparticle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy[J]. The Journal of PhysicalChemistry B, 2009, 113:10721-10727.
    [11] YANG J, FR?SETH V, CHEN D, et al. Particle size effect forcobalt Fischer-Tropsch catalysts based on in situ COchemisorption[J]. Surface Science, 2016, 648:67-73.
    [12] BORG?, DIETZEL P D C, SPJELKAVIK A I, et al. Fischer-Tropsch synthesis:cobalt particle size and support effects onintrinsic activity and product distribution[J]. Journal of Catalysis,2008, 259:161-164.
    [13] DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, et al. Onthe origin of the cobalt particle size effects in Fischer-Tropschcatalysis[J]. Journal of American Chemical Society, 2009, 131:7197-7203.
    [14] RALSTON W T, MELAET G, SAEPHAN T, et al. Evidence ofstructure sensitivity in the Fischer-Tropsch reaction on modelcobalt nanoparticles by time-resolved chemical transient kinetics[J]. Angewandte Chemie International Edition, 2017, 56:7415-7419.
    [15] VAN HELDEN P, CIOB?C?I M, COETZER R L J. The size-dependent site composition of FCC cobalt nanocrystals[J].Catalysis Today, 2016, 261:48-59.
    [16] KRAUM M, BAERNS M. Fischer-Tropsch synthesis:theinfluence of various cobalt compounds applied in the preparationof supported cobalt catalysts on their performance[J]. AppliedCatalysis A:General, 1999, 186:189-200.
    [17] GIRARDON J-S, LERMONTOV A S, GENGEMBRE L, et al.Effect of cobalt precursor and pretreatment conditions on thestructure and catalytic performance of cobalt silica-supportedFischer-Tropsch catalysts[J]. Journal of Catalysis, 2005, 230:339-352.
    [18] HONG J P, MARCEAU E, KHODAKOV A Y, et al. Impact ofsorbitol addition on the structure and performance of silica-supported cobalt catalysts for Fischer-Tropsch synthesis[J].Catalysis Today, 2011, 175:528-533.
    [19] CHENG K, SUBRAMANIAN V, CARVALHO A, et al. The role ofcarbon pre-coating for the synthesis of highly efficient cobaltcatalysts for Fischer-Tropsch synthesis[J]. Journal of Catalysis,2016, 337:260-271.
    [20]石利红,李德宝,侯博,等.有机改性二氧化硅及其负载钴催化剂的费托合成反应性能[J].催化学报, 2007, 28:999-1002.SHI L H, LI D B, HOU B, et al. Organic modification of SiO2andits influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, 2007, 28:999-1002.
    [21] JIANG Z S, ZHAO Y H, HUANG C F, et al. Metal-supportinteractions regulated via carbon coating—A case study of Co/SiO2for Fischer-Tropsch synthesis[J]. Fuel, 2018, 226:213-220.
    [22] ZHAO Y H, SONG Y H, HAO Q Q, et al. Cobalt-supportedcarbon and alumina co-pillared montmorillonite for Fischer-Tropsch synthesis[J]. Fuel Processing Technology, 2015, 138:116-124.
    [23] LIU Y F, FLOREA I, ERSEN O, et al. Silicon carbide coated withTiO2with enhanced cobalt active phase dispersion for Fischer-Tropsch synthesis[J]. Chemical Communications, 2015, 51:145-148.
    [24] KARACA H, HONG J, FONGARLAND P, et al. In situ XRDinvestigation of the evolution of alumina-supported cobaltcatalysts under realistic conditions of Fischer-Tropsch synthesis[J]. Chemical Communication, 2010, 46:788-790.
    [25] KARACA H, SAFONOVA O V, CHAMBREY S, et al. Structureand catalytic performance of Pt-promoted alumina-supportedcobalt catalysts under realistic conditions of Fischer-Tropschsynthesis[J]. Journal of Catalysis, 2011, 277:14-26.
    [26] LIU J X, WANG P, XU W, et al. Particle size and crystal phaseeffects in Fischer-Tropsch catalysts[J]. Engineering, 2017, 3:467-476.
    [27] KITAKAMI O, SATO H, SHIMADA Y, et al. Size effect on thecrystal phase of cobalt fine particles[J]. Physical Review B, 1997,56:13849-13854.
    [28] LIU J X, SU H Y, SUN D P, et al. Crystallographic dependence ofCO activation on cobalt catalysts:HCP versus FCC[J]. Journal ofAmerican Chemical Society, 2013, 135:16284-16287.
    [29] LI W Z, LIU J X, GU J, et al. Chemical insights into the designand development of face-centered cubic ruthenium catalysts forFischer-Tropsch synthesis[J]. Journal of the American ChemicalSociety, 2017, 139:2267-2276.
    [30] ANDREEV A S, LACAILLERIE J B, LAPINA O B, et al. Thermalstability and hcp-fcc allotropic transformation in supported Cometal catalysts probed near operando by ferromagnetic NMR[J].Physical Chemistry Chemical Physics, 2015, 17:14598-14604.
    [31] O’SHEA V A, PISCINA P R, HOMS N, et al. Development ofhexagonal closed-packed cobalt nanoparticles stable at hightemperature[J]. Chemistry of Materials, 2009, 21(23):5637-5643.
    [32] GNANAMANI M K, JACOBS G, SHAFER W D, et al. Fischer-Tropsch synthesis:activity of metallic phases of cobalt supportedon silica[J]. Catalysis Today, 2013, 215:13-17.
    [33] PEI Y P, LI Z, LI Y W. Highly active and selective Co-basedFischer-Tropsch catalysts derived from metal-organic frameworks[J]. AIChE Journal, 2017, 63(7):2935-2944.
    [34] CLAEYS M, DRY M E, STEEN E V, et al. In situ magnetometerstudy on the formation and stability of cobalt carbide in Fischer-Tropsch synthesis[J]. Journal of Catalysis, 2014, 318:193-202.
    [35] RYTTER E, HOLMEN A. Deactivation and regeneration ofcommercial type Fischer-Tropsch Co-catalysts—A mini-review[J]. Catalysts, 2015, 5:478-499.
    [36] LOOSDRECHT J V D, CIOBICA I M, GIBSON P, et al. Providingfundamental and applied insights into Fischer-Tropsch catalysis:Sasol-Eindhoven university of technology collaboration[J]. ACSCatalysis, 2016, 6:3840-3855.
    [37] TSAKOUMIS N E, R?NNING M, BORG?, et al. Deactivation ofcobalt based Fischer-Tropsch catalysts:a review[J]. Catalysis Today, 2010, 154:162-182.
    [38] KISTAMURTHY D, SAIB A M, MOODLEY D J, et al. Ostwaldripening on a planar Co/SiO2catalyst exposed to model Fischer-Tropsch synthesis conditions[J]. Journal of Catalysis, 2015, 328:123-129.
    [39] CLARKSON J, ELLIS P R, HUMBLE R, et al. Deactivation ofalumina supported cobalt FT catalysts during testing in acontinuous-stirred tank reactor(CSTR)[J]. Applied Catalysis A:General, 2018, 550:28-37.
    [40] PHAAHLAMOHLAKA T N, DLAMINI M W, MOGODI M W, etal. A sinter resistant Co Fischer-Tropsch catalyst promoted withRu and supported on titania encapsulated by mesoporous silica[J].Applied Catalysis A:General, 2018, 552:129-137.
    [41] ISHIHARA D, TAO K, YANG G H, et al. Precisely designingbimodal catalyst structure to trap cobalt nanoparticles insidemesopores and its application in Fischer-Tropsch synthesis[J].Chemical Engineering Journal, 2016, 306:784-790.
    [42] SUBRAMANIAN V, CHENG K, LANCELOT C, et al.Nanoreactors:an efficient tool to control the chain-lengthdistribution in Fischer-Tropsch synthesis[J]. ACS Catalysis, 2016,6:1785-1792.
    [43] OUYANG R H, LIU J X, LI W X. Atomistic theory of ostwaldripening and disintegration of supported metal particles underreaction conditions[J]. Journal of the American Chemical Society,2013, 135:1760-1771.
    [44] MENON P G. Coke on catalysts-harmful, harmless, invisible andbeneficial types[J]. Journal of Molecular Catalysis. 1990, 59:207-220.
    [45] KWAK G, WOO M H, KANG S C, et al. In situ monitoring duringthe transition of cobalt carbide to metal state and its application asFischer-Tropsch catalyst in slurry phase[J]. Journal of Catalysis,2013,307:27-36.
    [46] CLAEYS M, DRY M E, STEEN E V, et al. Impact of processconditions on the sintering behavior of an alumina-supportedcobalt Fischer-Tropsch catalyst studied with an in situ magnetometer[J]. ACS Catalysis, 2015, 5:841-852.
    [47] SAIB A M, MOODLEYA D J, CIOB?C?I M, et al. Fundamentalunderstanding of deactivation and regeneration of cobalt Fischer-Tropsch synthesis catalysts[J]. Catalysis Today, 2010, 154:271-282.
    [48] MOODLEY D J, VAN DE LOOSDRECHT J, SAIB A M, et al.Carbon deposition as a deactivation mechanism of cobalt-basedFischer-Tropsch synthesis catalysts under realistic conditions[J].Applied Catalysis A:General, 2009, 354:102-110.
    [49] KEYVANLOO K, FISHER M J, HECKER W C, et al. Kinetics ofdeactivation by carbon of a cobalt Fischer-Tropsch catalyst:effects of CO and H2partial pressures[J]. Journal of Catalysis,2015, 327:33-47.
    [50] LANCELOT C, ORDOMSKY V V, STEPHAN O, et al. Directevidence of surface oxidation of cobalt nanoparticles in alumina-supported catalysts for Fischer-Tropsch synthesis[J]. ACSCatalysis, 2014, 4:4510-4515.
    [51] MADON R J, IGLESIA E. Hydrogen and CO intrapellet diffusioneffects in ruthenium-catalyzed hydrocarbon synthesis[J]. Journalof Catalysis, 1994, 149:428-437.
    [52]郝青青,胥娜,刘昭铁,等.合成气一步法合成清洁汽油的研究进展[J].石油化工, 2009, 38(2):207-214.HAO Q Q, XU N, LIU Z T, et al. Recent advances in one-stepsynthesis of clean gasoline from syngas[J]. PetrochemicalTechnology, 2009, 38(2):207-214.
    [53]王野,成康,张庆红.一氧化碳加氢制碳氢化合物反应选择性的调控[J].中国科学:化学, 2012, 42(4):363-375.WANG Y, CHENG K, ZHANG Q H. Selective regulation ofcarbon monoxide hydrogenation to hydrocarbons[J]. ScientiaSinica Chimica, 2012, 42(4):363-375.
    [54] ZHANG Q H, CHENG K, KANG J C, et al. Fischer-Tropschcatalysts for the production of hydrocarbon fuels with highselectivity[J]. ChemSusChem, 2014, 7:1251-1264.
    [55] YAO M, YAO N, SHAO Y, et al. New insight into the activity ofZSM-5 supported Co and Co Ru bifunctional Fischer-Tropschsynthesis catalyst[J]. Chemical Engineering Journal, 2014, 239:408-415.
    [56] PEREIRA A L C, GONZáLEZ-CARBALLO J M, PéREZ-ALONSO F J, et al. Effect of the mesostructuration of the betazeolite support on the properties of cobalt catalysts for Fischer-Tropsch synthesis[J]. Topics in Catalysis, 2011, 54:179-189.
    [57] KANG J C, CHENG K, ZHANG L, et al. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11isoparaffins[J].Angewandte Chemie International Edition, 2011, 50:5200-5203.
    [58] SARTIPI S, ALBERTS M, MEIJERINK M J, et al. Towards liquidfuels from biosyngas:effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts[J]. ChemSusChem, 2013, 6:1646-1650.
    [59] SARTIPI S, PARASHAR K, VALERO-ROMERO M J, et al.Hierarchical H-ZSM-5-supported cobalt for the direct synthesisof gasoline-range hydrocarbons from syngas:advantages,limitations, and mechanistic insight[J]. Journal of Catalysis, 2013,305:179-190.
    [60] PENG X B, CHENG K, KANG J C, et al. Impact of hydrogenolysison the selectivity of the Fischer-Tropsch synthesis:diesel fuelproduction over mesoporous zeolite-Y-supported cobaltnanoparticles[J]. Angewandte Chemie International Edition, 2015,54:4553-4556.
    [61] KIM J C, LEE S, CHO K, et al. Mesoporous MFI zeolitenanosponge supporting cobalt nanoparticles as a Fischer-Tropschcatalyst with high yield of branched hydrocarbons in the gasolinerange[J]. ACS Catalysis, 2014, 4:3919-3927.
    [62] HAO Q Q, WANG G W, LIU Z T, et al. Co/pillared clay bifunctionalcatalyst for controlling the product distribution of Fischer-Tropschsynthesis[J]. Industrial&Engineering Chemistry Research, 2010,49:9004-9011.
    [63] HAO Q Q, LIU Z W, ZhANG B S, et al. Porous montmorilloniteheterostructures directed by a single alkyl ammonium template forcontrolling the product distribution of Fischer-Tropsch synthesisover cobalt[J]. Chemistry of Materials, 2012, 24:972-974.
    [64] WANG G W, HAO Q Q, LIU Z T, et al. Fischer-TropschsynthesisoverCo/montmorillonite—Insightsintotheroleofinterlayerexchangeable cations[J]. Applied Catalysis A:General, 2011, 405(1/2):45-54.
    [65] HAO Q Q, WANG G W, LIU Z T, et al. Insights into structuraland chemical properties of activated montmorillonite for Fischer-Tropsch synthesis over supported cobalt catalysts[M]//DALAI AK. Nanocatalysis for Fuels and Chemicals. Washington, DC:American Chemical Society, 2012:167-193.
    [66] ZHAO Y H, HAO Q Q, SONG Y H, et al. Cobalt supported onalkaline-activated montmorillonite as an efficient catalyst forFischer-Tropsch synthesis[J]. Energy&Fuels, 2013, 27:6362-6371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700