用户名: 密码: 验证码:
银杏内酯K的PLGA-PEG纳米粒制备、表征和神经保护活性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and characterization of ginkgolide K-loaded PLGA-PEG nanoparticles and its neuroprotective activity in vitro
  • 作者:马舒伟 ; 刘兴艳 ; 辛杨 ; 殷华峰
  • 英文作者:MA Shu-wei;LIU Xing-yan;XIN Yang;YIN Hua-feng;Traditional Chinese Medicine Institute, Zhejiang pharmaceutical college;Zhejiang Collaborative Innovation Center for High Value Utilization of byproducts from Ethylene,Ningbo Polytechnic;Institute of Chemistry and Chemical Engineering, Qiqihar University;School of Chinese Materia Medica Process, China Pharmaceutical University;
  • 关键词:银杏内酯K ; 聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒 ; 体外释放 ; 体外神经保护 ; 复乳溶剂挥发法 ; HPLC
  • 英文关键词:ginkgolide K;;m PEG-PLGA;;in vitro release;;in vitro neuroprotection;;double emulsion solvent evaporation technique;;HPLC
  • 中文刊名:ZCYO
  • 英文刊名:Chinese Traditional and Herbal Drugs
  • 机构:浙江医药高等专科学校;宁波职业技术学院乙烯工程副产物高质化利用浙江省应用技术协同创新中心;齐齐哈尔大学化学与化学工程学院;中国药科大学中药制药系;
  • 出版日期:2019-04-12
  • 出版单位:中草药
  • 年:2019
  • 期:v.50;No.642
  • 基金:国家自然科学基金资助项目(81403067);; 浙江省中医管理局项目(2015ZB105);; 浙江医药高等专科学校校级项目(ZPCSR2015008);; 黑龙江省省属高等学校基本科研业务费科研项目(UNPYSCT-2017160.YSTSXK201849)
  • 语种:中文;
  • 页:ZCYO201907011
  • 页数:7
  • CN:07
  • ISSN:12-1108/R
  • 分类号:63-69
摘要
目的制备及表征银杏内酯K(GK)聚乙二醇-聚乳酸-羟基乙酸共聚物纳米粒(GK-m PEG-PLGA-NPs),并评价其神经保护活性。方法采用聚乙二醇-聚乳酸-羟基乙酸共聚物(PEG-PLGA-COOH)作为载体,复乳溶剂挥发法制备隐形纳米粒;HPLC法测定GK-m PEG-PLGA-NPs的包封率及载药量;动态光散射粒径仪和透射电镜测定GK-m PEG-PLGA-NPs的粒径分布、Zeta电位及表面形态;以p H 7.4磷酸盐缓冲溶液(PBS)作为释放介质,考察GK-m PEG-PLGA-NPs的体外释放行为;采用体外细胞实验,考察GK-m PEG-PLGA-NPs对H2O2诱导肾上腺嗜铬细胞瘤PC12细胞损伤的保护作用。结果 GK-m PEG-PLGA-NPs包封率和载药量分别为(83.40±2.85)%和(3.26±0.24)mg/g;GK-m PEG-PLGA-NPs平均粒径为(93.19±2.77)nm;Zeta电位为(-11.93±1.71)m V;60 h内GK-m PEG-PLGA-NPs累积释药量为(90.5±4.0)%。GK-m PEG-PLGA-NPs对H2O2诱导的PC12细胞存活率降低有明显的改善作用,对乳酸脱氢酶(LDH)释放具有抑制作用,但其保护作用明显弱于GK对PC12细胞作用。结论 GK-m PEG-PLGA-NPs体外释放具有缓释性行为,对H2O2诱导PC12细胞具有神经保护作用,表明GK-m PEG-PLGA-NPs具有应用前景,值得进一步研究。
        Objective To prepare and characterize ginkgolide K-loaded m PEG-PLGA [poly(D,L-lactide-co-gly-colide)-block-poly(ethylene glycol)] polymer nanoparticles(GK-m PEG-PLGA-NPs) and to evaluate its neuroprotective effect on the H_2O_2-induced PC12 cells injury in vitro. Methods The PLGA-PEG-COOH polymer was selected as carrier and double emulsion solvent evaporation technique was employed to prepare the stealth nanoparticles. The encapsulation efficiency(EE) and drug load(DL) of GK-m PEG-PLGA-NPs were investigated by HPLC. The size distribution, zeta potential, and surface morphology of GK-m PEG-PLGA-NPs were characterized by dynamic light scattering(DLS) and transmission electron microscopy(TEM), respectively. The in vitro release of GK-m PEG-PLGA-NPs was examined using phosphate buffer solution(pH 7.4) as the releasing medium for 24 h. The H_2O_2-induced PC12 cells injury models was established for the investigation of the protective effect of GK-m PEG-PLGA-NPs on nerve cells in vitro. Results EE and DL of GK-m PEG-PLGA-NPs was(83.40 ± 2.85)% and(3.26 ± 0.24) mg/g, respectively. The average diameter of GK-m PEG-PLGA-NPs was(93.19 ± 2.77) nm and zeta potential was(-11.93 ± 1.71) m V. The cumulative rate of drug release was(90.5 ± 4.0)% after 60 h in phosphate buffer solution. GK-m PEG-PLGA-NPs significantly inhibited the apoptosis of PC12 cells and the release of lactic dehydrogenase induced by H_2O_2. However, the protective action of GK-m PEG-PLGA-NPs on the H_2O_2-iduced PC12 cells injury was significantly weaker than that of GK. Conclusion Our results proved that GK-m PEG-PLGA-NPs had a sustained release behavior in vitro and the neuroprotective effect of GK-m PEG-PLGA-NPs on H_2O_2-induced PC12 cells, which indicates that GK-m PEG-PLGA-NPs has the prospect of application and deserves further research.
引文
[1]汪素娟,康安,狄留庆,等.银杏叶提取物主要活性成分药动学研究进展[J].中草药,2013,44(5):626-631.
    [2]Ma S,Yin H,Chen L,et al.Neuroprotective effect of ginkgolide K against acute ischemic stroke on middle cerebral ischemia occlusion in rats[J].J Nat Med,2012,66(1):25-31.
    [3]马舒伟,陈旅翼,何盛江,等.银杏内酯K对脑缺血的保护作用[J].中国现代应用药学,2011,28(10):877-880.
    [4]Ma S,Liu X,Xun Q,et al.Neuroprotective effect of ginkgolide K against H2O2-induced PC12 cell cytotoxicity by ameliorating mitochondrial dysfunction and oxidative stress[J].Biol Pharm Bull,2014,37(2):217-225.
    [5]Ma S,Liu H,Jiao H,et al.Neuroprotective effect of ginkgolide K on glutamate-induced cytotoxicity in PC12cells via inhibition of ROS generation and Ca(2+)influx[J].Neurotoxicology,2012,33(1):59-69.
    [6]Liu Q,Li X,Li L,et al.Ginkgolide K protects SH-SY5Y cells against oxygen-glucose deprivation-induced injury by inhibiting the p38 and JNK signaling pathways[J].Mol Med Rep,2018,18(3):3185-3192.
    [7]Fan Z Y,Liu X G,Guo R Z,et al.Pharmacokinetic studies of ginkgolide K in rat plasma and tissues after intravenous administration using ultra-high performance liquid chromatography-tandem mass spectrometry[J].JChromatogr B Analyt Technol Biomed Life Sci,2015,988:1-7.
    [8]Yildiz T,Gu R,Zauscher S,et al.Doxorubicin-loaded protease-activated near-infrared fluorescent polymeric nanoparticles for imaging and therapy of cancer[J].Int JNanomed,2018,13:6961-6986.
    [9]邱瀚弘,朱志军,张雪洁,等.药载比对和厚朴酚-分枝状聚乙二醇聚合物G2纳米粒形态及体外抗肿瘤活性的影响[J].药物评价研究,2018,41(11):1951-1957.
    [10]朱文静,张良珂.载和厚朴酚介孔二氧化硅包覆聚吡咯纳米粒的制备研究[J].中草药,2018,49(9):2057-2062.
    [11]Soni N,Dhiman R C.Phytochemical,anti-oxidant,larvicidal,and antimicrobial activities of castor(Ricinus communis)synthesized silver nanoparticles[J].Chin Herb Med,2017,9(3):289-294.
    [12]Wang Y,Rapakousiou A,Ruiz J,et al.Metalation of polyaminedendrimers with ethynyl cobalticenium for the construction of mono-and heterobimetallic polycationicmetal lodendrimers[J].Chemistry,2014,20(35):11176-11186.
    [13]徐骏军,陈丹飞,宋倩倩,等.p H值响应释药As2O3聚乙二醇-聚己内酯-聚乙烯亚胺纳米粒的制备及体外评价[J].中草药,2018,49(23):5532-5540.
    [14]刘洋,谢栓栓,曾洁,等.表面修饰适配体S6的聚乳酸-羟基乙酸/聚乙二醇共聚物纳米粒制备及其运载小干扰RNA的应用研究[J].有机化学,2018,38(10):2706-2712.
    [15]童晓东,范永春,严玮.姜黄素维生素E聚乙二醇琥珀酸酯-聚乙二醇硬脂酸酯15胶束对姜黄素溶解度和口服生物利用度的影响[J].中草药,2017,48(5):902-906.
    [16]Veronese F M,Pasut G.PEGylation,successful approach to drug delivery[J].Drug Discov Today,2005,10(21):1451-1458.
    [17]Fernandes C,Martins C,Fonseca A,et al.PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B inhibitor[J].ACS Appl Mater Interfaces,2018,10(46):39557-39569.
    [18]刘朝勇,肖云芝,李瑞生,等.小菜蛾抗菌肽聚乳酸-羟基乙酸共聚物纳米粒的制备及体外评价[J].中草药,2015,46(3):348-352.
    [19]Fahmy T M,Samstein R M,Harness C C,et al.Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting[J].Biomaterials,2005,26(28):5727-5736.
    [20]Sonkusare S K,Kaul C L,Ramarao P.Dementia of Alzheimer’s disease and other neurodegenerative disorders-memantine,a new hope[J].Pharm Res,2005,51(1):1-17.
    [21]Cano A,Ettcheto M,Espina M,et al.Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles:A new anti-seizure strategy for temporal lobe epilepsy[J].Nanomedicine,2018,14(4):1073-1085.
    [22]Kakkar V,Muppu S K,Chopra K,et al.Curcumin loaded solid lipid nanoparticles:An efficient formulation approach for cerebral ischemic reperfusion injury in rats[J].Eur J Pharm Biopharm,2013,85(3 Pt A):339-345.
    [23]孙敏捷,张乐洋,平其能.长春碱PCL-PEG-PCL纳米粒的制备及质量评价[J].中国药科大学学报,2010,41(1):29-34.
    [24]Essa S,Rabanel J M,Hildgen P.Effect of polyethylene glycol(PEG)chain organization on the physicochemical properties of poly(D,L-lactide)(PLA)based nanoparticles[J].Eur J Pharm Biopharm,2010,75(2):96-106.
    [25]Owens III D E,Peppas N A.Opsonization,biodistribution,and pharmacokinetics of polymeric nanoparticles[J].Int J Pharm,2006,307(1):93-102.
    [26]高红军.功能协同的复合胶束作为抗肿瘤纳米药物载体的研究[D].天津:南开大学,2014.
    [27]王岩.不同分子量的MPEG-PLGA纳米药物载体的体外降解和药物释放行为研究[D].长春:吉林大学,2014.
    [28]Thauvin C,Schwarz B,Delie F,et al.Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles[J].Int J Pharm,2018,548(2):71-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700