用户名: 密码: 验证码:
高温环境下薄壁结构声激励响应及疲劳分析与试验验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Acoustic excitation response and fatigue life analysis and test verification of thin-walled structure under high temperature environment
  • 作者:栾孝驰 ; 胡翼飞 ; 沙云东 ; 蒋金卓
  • 英文作者:LUAN Xiaochi;HU Yifei;SHA Yundong;JIANG Jinzhuo;Key Laboratory of Advanced Measurement and Test Technique for Aviation Propulsion System,Liaoning Province,Institute of Aircraft Engine,Shenyang Aerospace University;Shenyang Liming Aeroengine Corporation Limited,Aero Engine Corporation of China;
  • 关键词:薄壁结构 ; 高温声激励 ; 响应分析 ; 疲劳寿命预估 ; 高温行波管试验器
  • 英文关键词:thin-walled structures;;high temperature acoustic excitation;;response analysis;;fatigue life prediction;;high temperature travelling wave tube tester
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:沈阳航空航天大学航空发动机学院辽宁省航空推进系统先进测试技术重点实验室;中国航空发动机集团有限公司沈阳黎明航空发动机有限责任公司;
  • 出版日期:2018-11-14 13:47
  • 出版单位:航空动力学报
  • 年:2018
  • 期:v.33
  • 基金:航空基础科学基金(20151554002)
  • 语种:中文;
  • 页:HKDI201811001
  • 页数:12
  • CN:11
  • ISSN:11-2297/V
  • 分类号:10-21
摘要
针对航空发动机薄壁结构热声疲劳问题,采用耦合的有限元/边界元法,对GH188薄壁结构进行动力学响应计算,采用改进的雨流计数法和Morrow平均应力模型,结合Miner线性累积损伤理论对薄壁结构疲劳寿命进行了预估。基于高温行波管试验器开展了GH188薄壁结构高温声激振疲劳试验研究,获取了薄壁结构在不同温度和声载荷作用下的模态频率、应力/应变响应和疲劳寿命结果。仿真计算结果与试验结果对比分析表明:数值仿真对结构破坏位置判断准确,破坏位置均为结构根部,结构1阶热模态频率具有一致性,误差0.49%~2.09%之间,X方向应力响应峰值集中在基频附近,随温度升高,结构发生软化刚度下降,响应峰值向左发生偏移,且预测水平与试验一致,误差在1%~3%之间,验证了薄壁结构热声响应计算方法与计算模型的准确性。结构疲劳寿命随温度和声压级的上升而均呈现下降趋势,疲劳破坏时间的预估值与试验结果在一个量级之内,误差在3~3.5倍之间,满足工程级寿命预测要求,验证了薄壁结构热声疲劳寿命预估方法的有效性。
        To solve thermal-acoustic fatigue of aero-engine thin-walled structure,the coupled finite element method/boundary element method was used to calculate dynamic response of GH188 thin-walled structures.Based on the theory of Miner liner fatigue accumulative damage,an improved rain-flow counting method and a Morrow mean stress model wereadopted to estimate the fatigue life of thin-walled structures.With the use of high temperature travelling wave tube tester,GH188 thin-walled structure high temperature acoustic vibration fatigue test was conducted to obtain modal frequency,stress/strain response and fatigue life results of thin-walled structure under different temperatures and acoustic loads.It was shown in the contrastive analysis of the simulating calculation and test results that numerical simulation had accurate location judging for structural damage positions,all in the rooted positions of structures.The first-order thermal modal frequency was of consistent structures,with errors between 0.49%-2.09%,and X-stress response peaks were centered on fundamental frequency.With the rise of temperature,structure softening and stiffness reduction occurred,and response peak moved to the left;as the prediction level was consistent with the experiment,errors were between 1%-3%,validating the accuracy of thin-walled structure calculation method and model thermal-acoustic response.Structure fatigue life showed a decreasing trend with the increase of temperature and sound pressure level,and the predicted value of fatigue life and the test result were in the same order of magnitude,with the error between 3-3.5 times,satisfying the requirements of engineering level life prediction,and validating the effectiveness of simulation method for predicting thermal-acoustic fatigue life of thin-walled structure.
引文
[1] SCHNEIDER C W.Acoustic fatigue of aircraft structures at elevated temperatures[R].Seattle,US:Aeronautics Conference,1973.
    [2] MEI C,PRASAD C B.Effects of nonlinear damping on random response of beams to acoustic loading[R].San Antonio,US:The 27th Proceeding of Structures,Structural Dynamics and Materials Conference,1986.
    [3] LEE J.Large-amplitude plate vibration in an elevated thermal environment[J].Applied Mechanics Reviews,1993,46(11S):98.
    [4] LEE J.Displacement and strain histograms of thermally buckled composite plates in random vibration[R].Salt Lake City,US:37th Structures,Structural Dynamics,and Materials Conference,1996.
    [5] LEE J.Displacement and strain statistics of thermally buckled plates[R].St.Louis,US:40th Structures,Structural Dynamics,and Materials Conference and Exhibit,1999.
    [6] RIZZI S A,MURAVYOV A A.Equivalent linearization analysis of geometrically nonlinear random vibrations using commercial finite element codes[R].NASA/TP-2002-211761,2002.
    [7] SCHNEIDER C W.Acoustic fatigue resistance of aircraft structures at elevated temperatures[R].AIAA 73-994,1979.
    [8] JACOBSON M J.Sonic fatigue design data for bonded aluminum aircraft structures[J].Journal of Aircraft,1981,18(6):438-444.
    [9] GASNER J A,FOSTER R C,FUJIMURA C.Evaluation of thermal management for a Mach 5.5hypersonic vehicle[R].Cleveland,US:Joint Propulsion Conference and Exhibit,1992.
    [10] JACOBS J H,GRUENSFELDER C,HEDGECOCK C E.Thermal acoustic fatigue of ceramic matrix composite materials[R].AIAA 93-1319,1993.
    [11] VAICAITIS R.Nonlinear response and sonic fatigue of national aerospace space plane surface panels[J].Journal of Aircraft,2012,31(1):10-18.
    [12] CROOP H C,MICHAEL P,WENTZ K R.Dynamic fatigue of carbon-carbon thermal protection systems[R].Salt Lake City,US:37th Structures,Structural Dynamics and Materials Conference and Exhibit,1996.
    [13]曹茂国,李琳.薄壁板结构声激励载荷作用下的响应谱估算方法[J].航空动力学报,2000,15(3):295-297,302.CAO Maoguo,LI Lin.Estimation of response power spectrum of panel structure under acoustic loads[J].Journal of Aerospace Power,2000,15(3):295-297,302.(in Chinese)
    [14]金奕山,李琳.关于航空发动机结构声疲劳寿命估算方法的探讨[J].航空动力学报,2003,18(3):373-377.JIN Yishan,LI Lin.Sonic fatigue life prediction of aeroengine structure[J].Journal of Aerospace Power,2003,18(3):373-377.(in Chinese)
    [15]李久楷,刘永杰,王清远,等.TC17钛合金高温超高周疲劳实验[J].航空动力学报,2014,29(7):1567-1573.LI Jiukai,LIU Yongjie,WANG Qingyuan,et al.High-temperature ultra-high cycle fatigue test of TC17titanium alloy[J].Journal of Aerospace Power,2014,29(7):1567-1573.(in Chinese)
    [16] SHA Y D,GAO Z J,XU F,et al.Influence of thermal loading on the dynamic response of thin-walled structure under thermo-acoustic loading[J].Advanced Engineering Forum,2011,2(3):876-881.
    [17] SHA Y D,XU F,GAO Z J.Nonlinear response of carboncarbon composite panels subjected to thermal-acoustic loadings[J].Applied Mechanics and Materials,2012,117-118-119(5):319-323.
    [18]沙云东,魏静,高志军.热声载荷作用下薄壁结构的非线性响应特性[J].航空学报,2013,34(6):1336-1346.SHA Yundong,WEI Jing,GAO Zhijun.Nonlinear characteristics of thin-walled structures under thermo-acoustic loading[J].Acta Aeronautica et Astronautica Sinica,2013,34(6):1336-1346.(in Chinese)
    [19]王建,沙云东,赵奉同,等.热声载荷下薄壁开孔结构振动响应与寿命预估[J].航空发动机,2017,43(3):24-31.WANG Jian,SHA Yundong,ZHAO Fengtong,et al.Vibration response analysis and fatigue life prediction of thin-walled structures with opening under thermo-acoustic loads[J].Aeroengine,2017,43(3):24-31.(in Chinese)
    [20] NORTON M P.工程噪声和振动分析基础[M].盛元生,译.北京:航空工业出版社,1993.
    [21]沙云东,王建,骆丽,等.热声载荷作用下金属薄壁结构的振动响应与试验验证[J].振动与冲击,2017,36(20):218-224,232.SHA Yundong,WANG Jian,LUO Li,et al.Vibration responses analysis and experimental verification of metallic thin-walled structures to thermal-acoustic loadings[J].Journal of Vibration and Shock,2017,36(20):218-224,232.(in Chinese)
    [22]沙云东,魏静,高志军,等.热声激励下金属薄壁结构的随机疲劳寿命估算[J].振动与冲击,2013,32(10):162-166,197.SHA Yundong,WEI Jing,GAO Zhijun.Random fatigue life prediction of metallic thin-walled structures under thermo-acoustic excitation[J].Journal of Vibration and Shock,2013,32(10):162-166,197.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700