用户名: 密码: 验证码:
垂直腔面发射激光器氧化孔结构对器件激射性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Oxide Aperture Structure on Lasing Performance for Vertical Cavity Surface Emitting Laser
  • 作者:梁静 ; 贾慧 ; 冯海通 ; 唐吉龙 ; 房丹 ; 苏瑞巩 ; 张宝顺 ; 魏志鹏
  • 英文作者:Liang Jing;Jia Huimin;Feng Haitong;Tang Jilong;Fang Dan;Su Ruigong;Zhang Baoshun;Wei Zhipeng;State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology;Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences;
  • 关键词:激光器 ; 垂直腔面发射激光器 ; 台面结构 ; 氧化孔 ; 激射性能 ; 边模抑制比
  • 英文关键词:lasers;;vertical cavity surface emitting laser;;mesa structure;;oxide aperture;;lasing performance;;side-mode suppression ratio
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:长春理工大学理学院高功率半导体激光器国家重点实验室;中国科学院苏州纳米技术与纳米仿生研究所;
  • 出版日期:2019-03-10
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:国家重点研发计划项目(2017YFB0402800);; 国家自然科学基金(61504010,61504022);; 吉林省科技厅中青年科技创新领军人才及团队项目(20160519007JH);吉林省科技厅重大科技招标专项(20160203015GX)
  • 语种:中文;
  • 页:JJZZ201903002
  • 页数:6
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:20-25
摘要
为实现894.6 nm低阈值、高稳定性、单模激光输出,设计了具有不同台面刻蚀结构的垂直腔面发射激光器(VCSEL)器件,研究了台面直径和氧化孔结构对器件激射性能的影响。研究结果表明:VCSEL台面直径越大,阈值电流越大;氧化孔径越偏向圆形,边模抑制比越高。制备了氧化孔为圆形、直径为4.4μm的VCSEL器件,该器件在70~90℃工作温度及0.6 mA驱动电流下实现了894.6 nm单模激光输出,边模抑制比高于35 dB。
        In order to realize 894.6 nm single mode laser output with low threshold, high stability, we design vertical cavity surface emitting laser(VCSEL) devices with different mesa etching structure and study the influences of mesa diameter, oxide aperture shape and size on lasing performance. The research results show that the larger of the mesa in VCSEL device, the higher the threshold current; the more circular the oxide aperture, the higher the single mode suppression ratio. VCSEL devices with diameter of 4.4 μm circular oxide aperture is achieved, and the device can realize 894.6 nm single mode laser output with driving current of 0.6 mA and working temperature of 70-90 ℃, and the side mode suppression ratio is higher than 35 dB.
引文
[1] Komar P, piewak P, G?bski M, et al. The influence of the VCSEL design on its electrical modulation properties[J]. Proceedings of SPIE, 2018, 10552: 105520M.
    [2] Lu I C, Wei C C, Chen H Y, et al. Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 444-452.
    [3] Yazdanypoor M, Emami F. High power single mode multi-oxide layer VCSEL with optimized thicknesses and aperture sizes of oxide layers[J]. Journal of the Optical Society of Korea, 2014, 18(2): 167-173.
    [4] Shi G Z, Guan B L, Li S, et al. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers[J]. Chinese Physics B, 2013, 22(1): 014206.
    [5] Geib K M, Choquette K D, Hou H Q, et al. Fabrication issues of oxide-confined VCSELs[J]. Proceedings of SPIE, 1997, 3003: 69-75.
    [6] Ku P C, Chang-Hasnain C J. Thermal oxidation of AlGaAs: modeling and process control[J]. IEEE Journal of Quantum Electronics, 2003, 39(4): 577-585.
    [7] Hawkins B M, Hawthorne R A, Guenter J K, et al. Reliability of various size oxide aperture VCSELs[C]. Electronic Components and Technology Conference, 2002: 540-550.
    [8] Chang Y C, Wang C S, Johansson L A, et al. High-efficiency, high-speed VCSELs with deep oxidation layers[J]. Electronics Letters, 2006, 42(22): 1281-1282.
    [9] Almuneau G, Bossuyt R, Collière P, et al. Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs[J]. Semiconductor Science and Technology, 2008, 23(10): 105021.
    [10] Liu D, Ning Y Q, Qin L, et al. Effect of oxide aperture on temperature rise in high power vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2012, 39(5): 0502005. 刘迪, 宁永强, 秦莉, 等. 氧化孔径对高功率垂直腔面发射激光器温升的影响[J]. 中国激光, 2012, 39(5): 0502005.
    [11] Feng Y, Hao Y Q, Wang X T, et al. Structural optimization and fabrication of 850 nm vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2017, 44(3): 0301005. 冯源, 郝永芹, 王宪涛, 等. 850 nm垂直腔面发射激光器结构优化与制备[J]. 中国激光, 2017, 44(3): 0301005.
    [12] Marigo-Lombart L, Calvez S, Arnoult A, et al. Oxide-confined VCSELs fabricated with a simple self-aligned process flow[J]. Semiconductor Science and Technology, 2017, 32(12): 125004.
    [13] Guan B L, Liu X, Jiang X W, et al. Multi-transverse-mode and wavelength split characteristics of vertical cavity surface emitting laser[J]. Acta Physica Sinica, 2015, 64(16): 164203. 关宝璐, 刘欣, 江孝伟, 等. 多横模垂直腔面发射激光器及其波长特性[J]. 物理学报, 2015, 64(16): 164203.
    [14] Mokhtari M, Pagnod-Rossiaux P, Laruelle F, et al. Optical characterizations of VCSEL for emission at 850 nm with Al oxide confinement layers[J]. Journal of Electronic Materials, 2018, 47(9): 4987-4992.
    [15] Zhang J W, Zhang X, Zhu H B, et al. High-temperature operating 894.6 nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks[J]. Optics Express, 2015, 23(11): 14763-14773.
    [16] Chang Y A, Chen J R, Kuo H C, et al. Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers[J]. Journal of Lightwave Technology, 2006, 24(1): 536-543.
    [17] Zhang J W, Ning Y Q, Zhang X, et al. Gain-cavity mode detuning vertical cavity surface emitting laser operating at the high temperature[J]. Chinese Journal of Lasers, 2013, 40(5): 0502001. 张建伟, 宁永强, 张星, 等. 增益-腔模失配型高温工作垂直腔面发射半导体激光器[J]. 中国激光, 2013, 40(5): 0502001.
    [18] Li M S, Zhang B T, Chen K P, et al. Noncircular refractive index profile and breakdown of mode degeneracy of vertical cavity surface emitting lasers[J]. IEEE Journal of Quantum Electronics, 2012, 48(8): 1065-1068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700