用户名: 密码: 验证码:
高温和干旱胁迫对西红柿幼苗生长、养分含量及元素利用效率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of high temperature and drought stress on growth, nutrient concentration, and nutrient use efficiency of tomato seedlings
  • 作者:王德福 ; 段洪浪 ; 黄国敏 ; 周际海 ; 李威 ; 黄荣珍 ; 樊后保
  • 英文作者:WANG Defu;DUAN Honglang;HUANG Guomin;ZHOU Jihai;LI Wei;HUANG Rongzhen;FAN Houbao;Jiangxi Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology;
  • 关键词:高温 ; 干旱 ; 生长 ; 养分 ; 元素利用效率
  • 英文关键词:high temperature;;drought;;growth;;nutrient;;nutrient use efficiency
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:南昌工程学院江西省退化生态系统修复与流域生态水文重点实验室;
  • 出版日期:2019-02-27 08:30
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:江西省教育厅科研技术研究项目(GJJ151097);; 国家自然科学基金项目(31600483,31760111);; 江西省主要学科学术和技术带头人资助项目(20162BCB22021)
  • 语种:中文;
  • 页:STXB201909017
  • 页数:11
  • CN:09
  • ISSN:11-2031/Q
  • 分类号:184-194
摘要
全球气候变化将增加未来高温与干旱的发生频率和强度,然而高温与干旱的交互作用对农作物生长、养分含量及其利用效率的影响还不甚清楚。因此,研究高温与干旱交互作用对农作物生理生态的影响将为准确评价农作物对未来极端气候条件的响应提供科学依据。选取全球第四大经济作物——西红柿为研究对象,在人工智能气候箱中模拟高温和干旱环境。共设置两个水分处理(正常浇水;干旱)与两个温度处理(常温-26℃/19℃(白天/夜间);高温-42℃/35℃(白天/夜间)(7d))。主要测定指标包括生物量以及生物量分配、比叶面积、养分含量(全氮、全磷)、光合元素利用效率(光合氮素利用效率、光合磷素利用效率)。研究表明,高温、干旱单独作用以及交互作用均显著降低了根、茎、叶生物量以及总生物量,并且高温干旱交互作用使总生物量降低最多。在生物量分配方面,高温单独作用显著降低了根质量分数以及根冠比,而干旱单独作用增加了根质量分数、茎质量分数以及根冠比,但降低了叶质量分数。在养分含量方面,高温单独作用导致叶片全氮、全磷含量显著降低、茎全磷含量显著增加、根全磷含量显著降低。干旱单独作用导致叶片、茎全磷含量显著降低、根全氮含量显著升高。高温与干旱交互作用对生物量分配及养分含量的影响与干旱胁迫单独作用类似。在光合元素利用效率方面,高温、干旱单独作用均降低了幼苗光合氮素利用效率、光合磷素利用效率,并且高温加剧了干旱对光合磷素利用效率的影响。因此,在未来气候变化情况下,高温与干旱交互作用可能会对农作物产生更大威胁。
        Concurrent high temperature and drought are predicted to occur more frequently with global climate warming, although their interactive effects on crop growth, nutrient concentrations, and nutrient use efficiencies are still poorly understood. Therefore, an improved understanding of how high temperature and drought interactively affect crops is crucial for accurately predicting crop response to future climates. Herein, we examined effects of simulated high temperature and drought stress on tomato seedlings in growth chambers. Tomato seedlings were grown under two soil water conditions(well-watered and drought stress) and two temperature treatments(ambient temperature—26℃/19℃(day/night) and high temperature treatment—42℃/35℃(day/night)(7 days)). Biomass production and allocation, specific leaf area(SLA), nutrient(total nitrogen—TN, total phosphorus—TP) concentrations, photosynthetic nutrient use efficiencies(photosynthetic nitrogen use efficiency—PNUE, photosynthetic phosphorus use efficiency—PPUE) were examined. The results showed that individual and interactive effects of high temperature and drought treatments reduced the biomass of roots, stems, leaves, and the whole plant, and the combination of the two treatments had the greatest effect on the whole plant. The individual high temperature treatment significantly reduced the root mass fraction(RMF) and root shoot ratio(R/S), whereas drought stress increased the RMF, stem mass fraction(SMF) and R/S, but decreased the leaf mass fraction(LMF). Furthermore, high temperature induced declines in leaf TN and TP and root TP concentrations, but increased stem TP concentration. Drought reduced leaf and stem TP concentrations, whereas it increased root TN concentration. The interactive effects of high temperature and drought treatments on biomass allocation and nutrient concentration were similar with that of the drought stress alone. We found that high temperature and drought interactively reduced PNUE and PPUE, and the effect of drought stress on PPUE was exacerbated by high temperature. Hence, drought combined with high temperature may generate greater risks on crops under future climates.
引文
[1] IPCC.Climate Change 2014:Synthesis Report.Contribution of working groups I,II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press.
    [2] Jefferson M.IPCC fifth assessment synthesis report:“Climate change 2014:longer report”:critical analysis.Technological Forecasting and Social Change,2015,92:362- 363.
    [3] Medvigy D,Wofsy S C,Munger J W,Moorcroft P R.Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability.Proceedings of the National Academy of Sciences of the United States of America,2010,107(18):8275- 8280.
    [4] Siebers M H,Yendrek C R,Drag D,Locke A M,Rios Acosta L,Leakey A D B,Ainsworth E A,Bernacchi C J,Ort D R.Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.Global Change Biology,2015,21(8):3114- 3125.
    [5] Shah N H,Paulsen G M.Interaction of drought and high temperature on photosynthesis and grain-filling of wheat.Plant and Soil,2003,257(1):219- 226.
    [6] Ameye M,Wertin T M,Bauweraerts I,McGuire M A,Teskey R O,Steppe K.The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres.New Phytologist,2012,196(2):448- 461.
    [7] Duan H L,Wu J P,Huang G M,Zhou S X,Liu W F,Liao Y C,Xue Y,Xiao Z F,Fan H B.Individual and interactive effects of drought and heat on leaf physiology of seedlings in an economically important crop.AoB PLANTS,2016,9(1):plw090.
    [8] 李力,刘玉民,王敏,吴念,刘正艳,翁敏.3种北美红枫对持续高温干旱胁迫的生理响应机制.生态学报,2014,34(22):6471- 6480.
    [9] 屠小菊,汪启明,饶力群.高温胁迫对植物生理生化的影响.湖南农业科学,2013,(13):28- 30.
    [10] Chaves M M,Flexas J,Pinheiro C.Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell.Annals of Botany,2009,103(4):551- 560.
    [11] McDowell N,Pockman W T,Allen C D,Breshears D D,Cobb N,Kolb T,Plaut J,Sperry J,West A,Williams D G,Yepez E A.Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?New Phytologist,2008,178(4):719- 739.
    [12] 侯颖,王开运,张超.大气二氧化碳浓度与温度升高对红桦幼苗养分积累和分配的影响.应用生态学报,2008,19(1):13- 19.
    [13] 洪江涛,吴建波,王小.全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响.应用生态学报,2013,24(9):2658- 2665.
    [14] 王晶苑,王绍强,李纫兰,闫俊华,沙丽清,韩士杰.中国四种森林类型主要优势植物的C:N:P化学计量学特征.植物生态学报,2011,35(6):587- 595.
    [15] Han W X,Fang J Y,Guo D L,Zhang Y.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New phytologist,2005,168(2):377- 385.
    [16] Rouphael Y,Cardarelli M,Schwarz D,Franken P,Colla G.Effects of drought on nutrient uptake and assimilation in vegetable crops//Aroca R,ed.Plant Responses to Drought Stress.Berlin,Heidelberg:Springer,2012:171- 195.
    [17] Waraich E A,Ahmad R,Ashraf M Y.Role of mineral nutrition in alleviation of drought stress in plants.Australian Journal of Crop Science,2011,5(6):764- 777.
    [18] Teskey R,Wertin T,Bauweraerts I,Ameye M,Mcguire M A,Steppe K.Responses of tree species to heat waves and extreme heat events.Plant,Cell & Environment,2014,38(9):1699- 1712.
    [19] O′Carrigan A,Hinde E,Lu N,Xu X Q,Duan H L,Huang G M,Mak M,Bellotti B,Chen Z H.Effects of light irradiance on stomatal regulation and growth of tomato.Environmental and Experimental Botany,2014,98:65- 73.
    [20] Sharma H R,Sharma D,Thakur A K.Analysis of genetic divergence in tomato (Lycopersicon esculentum Mill.).Journal of Horticultural Sciences,2006,1(1):52- 54.
    [21] 章一清.CO2加富环境下番茄对高温胁迫的响应及机制探讨[D].杭州:浙江大学,2015.
    [22] Moyle L C.Ecological and evolutionary genomics in the wild tomatoes (solanum sect.lycopersicon).Evolution,2008,62(12):2995- 3013.
    [23] Heckathorn S A,Giri A,Mishra S,Bista D.Heat stress and roots//Tuteja N,Gill SS,eds.Climate Change and Plant Abiotic Stress Tolerance.Weinheim:Wiley‐VCH Verlag GmbH & Co.KGaA,2013:109- 136.
    [24] Duan H L,Duursma R A,Huang G M,Smith R A,Choat B,O′Grady A P,Tissue D T.Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings.Plant,Cell & Environment,2014,37(7):1598- 1613.
    [25] 金春燕.高温胁迫对番茄幼苗生长及生理代谢的影响[D].南京:南京农业大学,2011.
    [26] Giri A.Effect of Acute Heat Stress on Nutrient Uptake By Plant Roots[D].Toledo:The University of Toledo,2013.
    [27] 许维宏,吴宁,吴福忠.干旱条件下植物生长适应策略研究进展.世界科技研究与发展,2010,32(2):176- 179.
    [28] Xu W,Cui K H,Xu A H,Nie L X,Huang J L,Peng S B.Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings.Acta Physiologiae Plantarum,2015,37(2):1- 11.
    [29] 赵文赛,孙永林,刘西平.干旱-复水-再干旱处理对玉米光合能力和生长的影响.植物生态学报,2016,40(6):594- 603.
    [30] 张仁和,薛吉全,浦军,赵兵,张兴华,郑友军,卜令铎.干旱胁迫对玉米苗期植株生长和光合特性的影响.作物学报,2011,37(3):521- 528.
    [31] 何江峰,陆振翔,朱树声,赵萌莉.干旱胁迫对小黑麦生物量及淀粉特性影响的研究.干旱区资源与环境,2013,27(6):102- 106.
    [32] Xu Z Z,Zhou G S.Combined effects of water stress and high temperature on photosynthesis,nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis.Planta,2006,224(5):1080- 1090.
    [33] 刘丽娜.玉米对旱热双重胁迫的代谢响应研究[D].沈阳:东北大学,2014.
    [34] Huang B R,Rachmilevitch S,Xu J C.Root carbon and protein metabolism associated with heat tolerance.Journal of Experimental Botany,2012,63(9):3455- 3465.
    [35] 徐飞,郭卫华,徐伟红,王仁卿.刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应.北京林业大学学报,2010,32(1):24- 30.
    [36] 李燕,薛立,吴敏.树木抗旱机理研究进展.生态学杂志,2007,26(11):1857- 1866.
    [37] Aaltonen H,Lindén A,Heinonsalo J,Biasi C,Pumpanen J.Effects of prolonged drought stress on Scots pine seedling carbon allocation.Tree Physiology,2017,37(4):418- 427.
    [38] Susiluoto S,Berninger F.Interactions between morphological and physiological drought responses in Eucalyptus microtheca.Silva Fennica,2007,41(2):221- 233.
    [39] 任磊,赵夏陆,许靖,张宏毅,郭彦宏,郭福龙,张春来,吕晋慧.4种茶菊对干旱胁迫的形态和生理响应.生态学报,2015,35(15):5131- 5139.
    [40] Cui K H,Huang J L,Xing Y Z,Yu S B,Xu C G,Peng S B.Mapping QTLs for seedling characteristics under different water supply conditions in rice (Oryza sativa).Physiologia Plantarum,2010,132(1):53- 68.
    [41] Hirai G I,Chujo H,Tanaka O,Okumura T,Takeuchi S.Studies on the effect of the relative humidity of the atmosphere on the growth and physiology of rice plants:IX.Effects of water stresses induced by low humidity and the addition of polyethylene glycol to the medium on growth.Japanese Journal of Crop Science,2008,63(2):265- 270.
    [42] Asch F,Dingkuhn M,Sow A,Audebert A.Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice.Field Crops Research,2005,93(2/3):223- 236.
    [43] Khasanova A,James J J,Drenovsky R E.Impacts of drought on plant water relations and nitrogen nutrition in dryland perennial grasses.Plant and Soil,2013,372(1/2):541- 552.
    [44] 巩合德,杨国平,鲁志云,刘玉洪.哀牢山常绿阔叶林树种多样性及空间分布格局.生物多样性,2011,19(2):143- 150.
    [45] McDonald G K,Paulsen G M.High temperature effects on photosynthesis and water relations of grain legumes.Plant and Soil,1997,196(1):47- 58.
    [46] Sack L,Grubb P J.The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings.Oecologia,2002,131(2):175- 185.
    [47] 王振南,杨惠敏.植物碳氮磷生态化学计量对非生物因子的响应.草业科学,2013,30(6):927- 934.
    [48] He J S,Wang L,Flynn D F B,Wang X P,Ma W H,Fang J Y.Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia,2008,155(2):301- 310.
    [49] Koreselman W,Meuleman A F M.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation.Journal of Applied Ecology,1996,33(6):1441- 1150.
    [50] 郭胜利,周印东,张文菊,荣丽媛,刘振赏,高长青.长期施用化肥对粮食生产和土壤质量性状的影响.水土保持研究,2003,10(1):16- 22.
    [51] 陆媛.干旱胁迫对刺槐幼苗碳氮磷化学计量特征的影响[D].杨凌:西北农林科技大学,2015.
    [52] Sardans J,Peňuelas J.The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system.Plant Physiology,2012,160(4):1741- 1761.
    [53] He M Z,Dijkstra F A.Drought effect on plant nitrogen and phosphorus:a meta‐analysis.New Phytologist,2014,204(4):924- 931.
    [54] van Gestel M,Merckx R,Vlassak K.Microbial biomass responses to soil drying and rewetting:the fate of fast- and slow-growing microorganisms in soils from different climates.Soil Biology and Biochemistry,1993,25(1):109- 123.
    [55] Halverson L J,Jones T M,Firestone M K.Release of intracellular solutes by four soil bacteria exposed to dilution stress.Soil Science Society of America Journal,2000,64(5):1630- 1637.
    [56] Bottner P.Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C- and 15N-labelled plant material.Soil Biology and Biochemistry,1985,17(3):329- 337.
    [57] Mummey D L,Smith J L,Bolton Jr H.Nitrous oxide flux from a shrub-steppe ecosystem:sources and regulation.Soil Biology and Biochemistry,1994,26(2):279- 286.
    [58] Lebedjantzev A N.Drying of soil,as one of the natural factors in maintaining soil fertility.Soil Science,1924,18(6):419- 448.
    [59] 邵维,吴永波,杨静,叶波,候俊青.高温干旱复合胁迫对刺槐幼苗生理生化性能的影响.中国农学通报,2014,30(4):1- 7.
    [60] 展小云,于贵瑞,盛文萍,方华军.中国东部南北样带森林优势植物叶片的水分利用效率和氮素利用效率.应用生态学报,2012,23(3):587- 594.
    [61] Feng Y L,Lei Y B,Wang R F,Callaway R M,Valiente-Banuet A,Inderjit,Li Y P,Zheng Y L.Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant.Proceedings of the National Academy of Sciences of the United States of America,2009,106(6):1853- 1856.
    [62] Hikosaka K.Interspecific difference in the photosynthesis-nitrogen relationship:patterns,physiological causes,and ecological importance.Journal of Plant Research,2004,117(6):481- 494.
    [63] Drenovsky R E,Khasanova A,James J J.Trait convergence and plasticity among native and invasive species in resource-poor environments.American Journal of Botany,2012,99(4):629- 639.
    [64] Yang Y,Liu Q,Wang G X.Physiological behaviors of Acer mono under drought and low light.Russian Journal of Plant Physiology,2011,58(3):531- 537.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700