用户名: 密码: 验证码:
基于微观层析成像技术的花岗岩残积土颗粒接触方式研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Use of X-ray computed tomography to study structures and particle contacts of granite residual soil
  • 作者:孙银磊 ; 汤连生
  • 英文作者:SUN Yin-lei;TANG Lian-sheng;School of Earth Sciences and Engineering, Sun Yat-sen University;Guangdong Provincial Key Laboratory of Mineral Resources and Geological Processes;
  • 关键词:微观层析成像技术 ; 花岗岩残积土 ; 颗粒重建 ; 颗粒规则化 ; 颗粒接触
  • 英文关键词:X-ray computed tomography;;granite residual soil;;reconstruction;;regularization;;particle contact
  • 中文刊名:ZNGY
  • 英文刊名:中南大学学报(英文版)
  • 机构:School of Earth Sciences and Engineering, Sun Yat-sen University;Guangdong Provincial Key Laboratory of Mineral Resources and Geological Processes;
  • 出版日期:2019-04-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:v.26
  • 基金:Projects(41572277,41877229) supported by the National Natural Science Foundation of China;; Project(2015A030313118) supported by the Natural Science Foundation of Guangdong Province,China;; Project(201607010023) supported by the Science and Technology Program of Guangzhou,China
  • 语种:英文;
  • 页:ZNGY201904016
  • 页数:17
  • CN:04
  • ISSN:43-1516/TB
  • 分类号:164-180
摘要
颗粒的接触方式以及颗粒的规则化处理对于研究岩土力学性质非常关键。本次研究中采集到了广州及福建地区的花岗岩残积土,在实验室条件下将其分别筛分成五种不同的粒组(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm),基于微观层析成像技术研究颗粒之间的接触方式。利用主成分分析法对组成颗粒的体素进行识别和搜索,确定颗粒的中心、方向及尺寸;基于笛卡尔空间坐标系,根据相邻颗粒关键位置的空间坐标,对其接触方式进行判定。结果显示,当花岗岩残积土颗粒粒径小于0.2 mm时,颗粒接触方式主要包含面-面、面-角、面-棱、棱-棱、棱-角、角-角接触;当颗粒粒径大于0.2 mm时,颗粒接触方式主要包含面-面、面-角、面-棱、棱-棱、棱-角、角-角、球-球、球-面、球-棱、球-角接触。土样的原始孔隙率、重建后的孔隙率及规则化后的孔隙率三者之间存在差异,这主要与花岗岩残积土遇水膨胀及崩解特性有关。
        A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied. The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm, 0.075 mm≤d<0.1 mm, 0.1 mm≤d<0.2 mm, 0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm) to study the structures and particle contacts of granite residual soil. The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil. The particle was identified and regularized using principal component analysis(PCA). The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses. The results demonstrate that the main types of contact among the particles are face-face, face-angle, face-edge, edge-edge, edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm, the contacts are effectively summarized as face-face, face-angle,face-edge, edge-edge, edge-angle, angle-angle, sphere-sphere, sphere-face, sphere-edge and sphere-angle contacts. The differences in porosity among the original sample, reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.
引文
[1] SUN Yin-lei, TANG Lian-sheng, LU Wei, ZHAO Zhan-lun.Study on the shear properties of granite residual soil in Guangzhou Area with different testing methods[J]. Fresen Environ Bull, 2018, 27(1):327-335. http://www.prt-parlar.de/download_feb_2018/.
    [2] KIM C, KIM T. Behavior of unsaturated weathered residual granite soil with initial water contents[J]. Engineering Geology, 2010, 113(1-4):1-10. DOI:10.1016/j.enggeo.2009.09.004.
    [3] ZENG Ling, BIAN Han-bing, SHI Zhen-ning, HE Zhong-ming. Forming condition of transient saturated zone and its distribution in residual slope under rainfall conditions[J]. Journal of Central South University, 2017, 24(8):1866-1880. DOI:https://doi.org/10.1007/s11771-017-3594-6.
    [4] POWERS M. A new roundness scale for sedimentary particles[J]. Journal of Sedimentary Research, 1953, 23(2):117-119. DOI:10.1306/D4269567-2B26-11D7-8648000102C1865D.
    [5] LI Xiong-wei, WANG Yong, YU Jing-wei. Unsaturated expansive soil fissure characteristics combined with engineering behaviors[J]. Journal of Central South University, 2012, 19(12):3564-3571. DOI:10.1007/s11771-012-1444-0.
    [6] ALSHIBLI K, DRUCKREY A, WEISKITTEL T, LAVRIK N. Quantifying morphology of sands using 3D imaging[J].Journal of Materials in Civil Engineering, 2013, 27(10):1-10. DOI:10.1061/(ASCE)MT.1943-5533.0001246.
    [7] FONSECA J, O'SULLIVAN C, COOP M. Non-invasive characterization of particle morphology of natural sands[J].Soils&Foundations, 2012, 52(4):712-722. DOI:10.1016/j.sandf.2012.07.011.
    [8] SUN Y, INDRARATNA B, NIMBALKAR S. Threedimensional characterisation of particle size and shape for ballast[J]. G6otechnique Letters, 2014, 4:197-202. DOI:10.1680/geolett.14.00036.
    [9] ZHOU Bo, WANG Jian-feng, ZHAO Bu-di.Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics[J]. Engineering Geology, 2015, 184(14):126-137. DOI:10.1016/j.enggeo.2014.11.009.
    [10] ZUO Chang-qun, LIU Dai-guo, DING Shao-lin. Microcharacteristics of strength reduction of tuff residual soil with different moisture[J]. KSCE Journal of Civil Engineering,2016, 20(2):639-646. DOI:10.1007/s12205-015-0408-y.
    [11] WANG Qing. A study on the structure and composition of granite residual soil in Eastern China[J]. Journal of Jilin University, 1991, 21(1):70-81.(in Chinese)
    [12] SHI Bin. Quantitative assessment of changes of microstructure for clayey soil in the process of compaction[J]. Chinese Journal of Geotechnical Engineering, 1996,18(4):57-62.(in Chinese)
    [13] IRFAN T. Mineralogy, fabric properties and classification of weathered granites in Hong Kong[J]. Quarterly Journal of Engineering Geology&Hydrogeology, 1996, 29(1):5-35.DOI:10.1144/GSL.QJEGH.1996.029.P1.02.
    [14] HU Rui-lin, LI Xiang-quan, GUAN Guo-lin. Soil micromechanics concept, view and core[J]. Acta Geoscientia Sinica, 1999,20(2):150-156.(in Chinese)
    [15] WU Neng-sen. Study on classification of granite residual soils[J]. Rock&Soil Mechanics, 2006, 27(12):2299-2304.(in Chinese)
    [16] TANG Lian-sheng, SANG Hai-tao, SONG Jing. Research on soil particle joint function and brittle-elastoplastic cement damage model of unsaturated granite residual soil[J]. Yantu Lixue/Rock&Soil Mechanics, 2013, 34(10):2877-2888.(in Chinese)
    [17] LI Jian-xin, CHEN Qiu-nan, ZHAO Liu. Experimental research on disintegration characteristics of weathered granite in Nanyue[J]. Chinese Journal of Underground Space and Engineering, 2015,11(s1):119-123.(in Chinese)
    [18] STOOPS G. Application of micro-morphological methods to the study of soil sequences in the tropics[C]//Libro de Ponencias, Congreso Extraordinario 50 Aniversario Sociedad Espanola de Ciencia del Suelo. Madrid, 1997:145-159.
    [19] SCOLLOLAVIZZARI G, EICHHORN K, WUTHRICH R.Computerized transverse axial tomography(CTAT)in the diagnosis of epilepsy[J]. European Neurology, 1977, 15(1):5-8. DOI:10.1159/000114782.
    [20] PETROVIC A, SIEBERT J, RIEKE P. Soil bulk density analysis in three dimensions by computed tomographic scanning[J]. Soil Science Society of America Journal, 1982,46(3):445-450. DOI:10.2136/sssaj1982.03615995004600030001x.
    [21] CHEN Yu-long. Permeability evolution of sandstone under multi-field coupling[J]. Journal of Central South University,2017, 48(9):2449-2457. DOI:10.11817/j.issn. 1672-7207.2017.09.025.
    [22] BECKERS E, PLOUGONVEN E, ROISIN C, HAPCA S,LEONARD A, DEGRE A. X-ray microtomography:A porosity-based thresholding method to improve soil pore network characterization?[J]. Geoderma, 2014, s219:145-154. DOI:10.1016/j.geoderma.2014.01.004.
    [23] CHATTERJEE N, FLURY M. Effect of particle shape on capillary forces acting on particles at the air-water interface[J]. Langmuir the ACS Journal of Surfaces&Colloids, 2013,29(25):7903-7911. DOI:10.1021/la4017504.
    [24] KETCHAM R. Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography[J]. Journal of Structural Geology, 2005, 27(7):1217-1228. DOI:10.1016/j.jsg.2005.02.006.
    [25] CHEN R, DREOSSI D, MANCINI L, MENK R, RIGON L,XIAO T, LONGO R. PITRE:Software for phase-sensitive X-ray image processing and tomography reconstruction[J].Journal of Synchrotron Radiation, 2012, 19(Pt 5):836-845.DOI:10.1107/S0909049512029731.
    [26] LIU J, PEREIRA G, REGENAUER K. From characterisation of pore-structures to simulations of porescale fluid flow and the upscaling of permeability using microtomography:A case study of heterogeneous carbonates[J]. Journal of Geochemical Exploration, 2014, 144(5):84-96. DOI:10.1016/j.gexplo.2014.01.021.
    [27] DRUCKREY A, ALSHIBLI K, AL-RAOUSH R. 3D characterization of sand particle-to-particle contact and morphology[J]. Computers&Geotechnics, 2016, 74:26-35.DOI:10.1016/j.compgeo.2015.12.014.
    [28] ARCHIBALD C, KWOK P. Research in computer and robot vision[M]. World Scientific, 1995.
    [29] AL-RAOUSH R. Microstructure characterization of granular materials[J]. Physica A Statistical Mechanics&Its Applications, 2007, 377(2):545-558. DOI:10.1016/j.physa.2006.11.090.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700