用户名: 密码: 验证码:
电弧作用下电接触材料的热烧蚀过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Ablation Process of Electrical Contact Materials Under Arc Effect
  • 作者:伍玉鑫 ; 杨泽锋 ; 高国强 ; 魏文赋 ; 李春茂 ; 吴广宁
  • 英文作者:WU Yuxin;YANG Zefeng;GAO Guoqiang;WEI Wenfu;LI Chunmao;WU Guangning;School of Electrical Engineering,Southwest Jiaotong University;
  • 关键词:电弧 ; 电接触材料 ; 相变 ; 熔池 ; 烧蚀坑
  • 英文关键词:arc;;electrical contact material;;phase change;;molten pool;;ablation crater
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:西南交通大学电气工程学院;
  • 出版日期:2018-08-27 11:57
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.320
  • 基金:国家自然科学基金(51325704;U1234202;51577158;516071147)~~
  • 语种:中文;
  • 页:GDYJ201907030
  • 页数:8
  • CN:07
  • ISSN:42-1239/TM
  • 分类号:267-274
摘要
电弧作用下,电接触表面局部温度超过材料相变温度,材料发生熔化、蒸发,进而接触表面形成熔池、烧蚀坑。电弧烧蚀将严重影响电接触性能,缩短材料使用寿命。为此建立了电弧的磁流体动力学模型,基于热传导理论,求解了电接触副浸铜碳材料–铜锡材料的温升侵蚀规律,分析了不同电弧电流、不同弧隙下接触材料烧蚀过程的变化规律;考虑浸铜碳材料的蒸发、升华,求解了材料表面的温度分布、熔池的形成情况、熔池内部的速度分布。仿真研究结果表明:铜锡材料温度升高的速度较慢,而浸铜碳材料温度迅速上升并发生相变形成烧蚀熔池。电弧电流越大,浸铜碳材料表面的烧蚀熔池域越大;弧间隙增加,浸铜碳材料表面烧蚀熔池半径变大。浸铜碳材料熔化、蒸发、升华后,材料表面形成了烧蚀熔池凹坑,表面最高温度在碳的升华温度附近波动,熔池内部液体的流动导致材料表面不光滑。
        Due to extremely high temperature, arc may cause the local temperature of electric contact surface to exceed the melting point of a material and change the material phase so as to facilitate the formation of a molten pool on the surface and ablation crater. Arc ablation will seriously affect the electrical contact properties and shorten the material life.Consequently, we established an MHD model of arc. Based on heat conduction theory, the temperature distribution of electrical contact pair(copper-immersed carbon material and copper-tin material) was obtained. The variation of the ablation process of contact materials under different arc currents and arc gaps was analyzed. After the evaporation and sublimation of the copper-impregnated carbon material are taken into account, the temperature distribution on the surface of the material, the formation of the molten pool, and the velocity distribution inside the molten pool were solved. The simulation results show that the temperature of the copper-tin material increases slowly, while the temperature of the copper-impregnated carbon material rises rapidly. The maximum temperature of the surface of copper-impregnated carbon material rises to the melting point of copper, which lead to material melting and gradually forming the molten pool. When the arc current rises, the molten pool on the surface of copper-impregnated carbon material increases. The radius of the molten pool on the surface of the copper-impregnated carbon material increases with the increase of the arc gap. After melting, evaporation and sublimation, an ablation crater is formed on the surface of the copper-impregnated carbon material. The maximum temperature of the surface fluctuates around sublimation temperature of carbon. The liquid inside the molten pool flows which eventually roughens the surface of the material.
引文
[1]胡怡,魏文赋,雷栋,等.弓网电弧等离子体光谱特性实验[J].电工技术学报,2016,31(24):62-70.HU Yi,WEI Wenfu,LEI Dong,et al.Experimental Investigation on spectral characteristics of pantograph-catenary arc plasma[J].Transactions of China Electrotechnical Society,2016,31(24):62-70.
    [2]胡怡,高国强,陈旭坤,等.基于光谱的降弓过程弓网电弧研究[J].高电压技术,2018,44(12):3980-3986.HU Yi,GAO Guoqiang,CHEN Xukun,et al.Research on pantograph arcing during the pantograph lowering process based on the spectral diagnosis[J].High Voltage Engineering,2018,44(12):3980-3986.
    [3]马强,荣命哲,ANTHONY B M,等.考虑电极烧蚀影响的低压断路器电弧运动特性仿真及实验[J].中国电机工程学报,2009,29(3):115-120.MA Qiang,RONG Mingzhe,ANTHONY B M,et al.Simulation and experimental research on air arc movement characteristic in low-voltage circuit breaker considering electrodes erosion[J].Proceedings of the CSEE,2009,29(3):115-120.
    [4]JOLLY D C.Anode surface temperature and spot formation model for the vacuum arc[J].Journal of Applied Physics,1982,53(9):6121.
    [5]石玉东,周悦,高国强,等.浸铜碳材料与电弧相互作用机理[J].高电压技术,2018,44(12):3872-3879.SHI Yudong,ZHOU Yue,GAO Guoqiang,et al.Interaction mechanism between copper-impregnated carbon materials and arc[J].High Voltage Engineering,2018,44(12):3872-3879.
    [6]WANG L J,JIA S L,LIU Y,et al.Modeling and simulation of anode melting pool flow under the action of high-current vacuum arc[J].Journal of Applied Physics,2010,107(11):113306.
    [7]WANG L J,ZHOU X,WANG H J,et al.Anode activity in a high-current vacuum arc:three-dimensional modeling and simulation[J].IEEE Transactions on Plasma Science,2012,40(9):2237-2246.
    [8]伍玉鑫,王阳明,杨泽锋,等.电弧作用下浸铜碳材料烧蚀过程的数值模拟[J].电工技术学报,2019,34(6):1119-1126.WU Yuxin,WANG Yangming,YANG Zefeng,et al.Numerical simulation of ablation process of copper-impregnated carbon material under arc action[J].Transactions of China Electrotechnical Society,2019,34(6):1119-1126.
    [9]高国强,颜馨,魏文赋,等.基于Hilbert分形天线的弓网电弧电磁辐射研究[J].高电压技术,2019,45(1):324-329.GAO Guoqiang,YAN Xin,WEI Wenfu,et al.Electromagnetic radiation of pantograph-catenary arc based on hilbert fractal antenna[J].High Voltage Engineering,2019,45(1):324-329.
    [10]郝静,高国强,许潘,等.考虑电极熔化的弓网电弧与电极耦合模型[J].高电压技术,2018,44(5):1668-1676.HAO Jing,GAO Guoqiang,XU Pan,et al.Model of coupled pantograph-catenary arc and electrodes considering electrodes melting[J].High Voltage Engineering,2018,44(5):1668-1676.
    [11]马云双,高国强,朱光亚.高速列车弓网电弧温度场特性仿真研究[J].高电压技术,2015,41(11):3597-3603.MA Yunshuang,GAO Guoqiang,ZHU Guangya.Numerical simulation and analysis of temperature distribution of pantograph-catenary arc characteristics of high-speed train[J].High Voltage Engineering,2015,41(11):3597-3603.
    [12]韩伟锋,高国强,刘贤汭,等.弓网电弧磁流体动力学模型[J].铁道学报,2015(5):21-26.HAN Weifeng,GAO Guoqiang,LIU Xianrui,et al.MHD model of pantograph-catenary arc[J].Journal of the China Railway Society,2015(5):21-26.
    [13]卜俊,丁涛,陈光雄.温度对受电弓滑板材料磨损的影响[J].润滑与密封,2010,35(5):22-25,105.BU Jun,DING Tao,CHEN Guangxiong.Effect of temperature on the wear behavior of a pantograph strip material[J].Lubrication Engineering,2010,35(5):22-25,105.
    [14]SENOUCI A,FRENE J,ZAIDI H.Wear mechanism in graphite-copper electrical sliding contact[J].Wear,1999,225(2):949-953.
    [15]郭凤仪,任志玲,马同立,等.滑动电接触磨损过程变化的实验研究[J].电工技术学报,2010,25(10):24-29.GUO Fengyi,REN Zhiling,MA Tongli,et al.Experimental research on wear process variability of the sliding electric contact[J].Transactions of China Electrotechnical Society,2010,25(10):24-29.
    [16]赵燕霞,刘敬超,孙乐民,等.载流摩擦磨损中电弧侵蚀的研究现状及趋势[J].润滑与密封,2010,35(8):111-113.ZHAO Yanxia,LIU Jingchao,SUN Lemin,et al.Present research status and future trends of arc in friction and wear with current[J].Lubrication Engineering,2010,35(8):111-113.
    [17]向川,廖敏夫,董华军,等.小间隙大电流真空电弧数值仿真[J].高电压技术,2011,37(11):2693-2699.XIANG Chuan,LIAO Minfu,DONG Huajun,et al.Numerical simulation of small gap large current vacuum arc[J].High Voltage Engineering,2011,37(11):2693-2699.
    [18]韩伟锋.弓网电弧磁流体动力学模型及温度分布研究[D].成都:西南交通大学,2014.HAN Weifeng.Study on MHD Model and temperature distribution of pantograph-catenary ARC[D].Chengdu,China:Southwest Jiaotong University,2014.
    [19]HSU K C,ETEMADI K,PFENDER E.Study of the free-burning high-intensity argon arc[J].Journal of Applied Physics,1983,54(3):1293-1301.
    [20]李兴文,王云峰,原帅,等.微型断路器短路开断过程中电极烧蚀特性仿真研究[J].中国电机工程学报,2017,37(4):1080-1088.LI Xingwen,WANG Yunfeng,YUAN Shuai,et al.Simulation research on electrode erosion characteristics of miniature circuit breaker during short circuit interruption process[J].Proceedings of the CSEE,2017,37(4):1080-1088.
    [21]周志鹏,刘志远,王振兴,等.考虑合金蒸发的真空电弧铜铬阳极热过程仿真[J].中国科技论文,2015,10(23):2749-2754,2768.ZHOU Zhipeng,LIU Zhiyuan,WANG Zhengxing,et al.Simulation of thermal process of CuCr anode invacuum arcs by considering alloys evaporations[J].China Science Paper,2015,10(23):2749-2754,2768.
    [22]王立军,贾申利,史宗谦,等.开距对不同状态下真空电弧特性影响的仿真分析[J].中国电机工程学报,2008,28(3):154-160.WANG Lijun,JIA Shenli,SHI Zongqian,et al.Simulation analysis of influence of electrode separations on vacuum arcs characteristics under different states[J].Proceedings of the CSEE,2008,28(3):154-160.
    [23]王立军,王流火,贾申利,等.电极间距对真空电弧电压及阳极熔池旋转速度影响的实验研究[J].中国电机工程学报,2010,31(25):135-140.WANG Lijun,WANG Liuhuo,JIA Shenli,et al.Experimental study on effects of electrode gaps on the high-current vacuum arc voltage and the rotation speed of anode melting pool[J].Proceedings of the CSEE,2010,31(25):135-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700