用户名: 密码: 验证码:
天然气水合物输送管道的压力损失规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pressure loss of conveying pipeline of natural gas hydrate
  • 作者:徐海良 ; 胡文港 ; 杨放琼
  • 英文作者:XU Hailiang;HU Wengang;YANG Fangqiong;School of Mechanical and Electrical Engineering, Central South University;State Key Laboratory of High Performance Complex Manufacturing, Central South University;
  • 关键词:天然气水合物 ; 水力输送 ; 压力损失 ; 模拟仿真
  • 英文关键词:gas hydrates;;hydraulic transmission;;pressure loss;;simulation
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:中南大学机电工程学院;中南大学高性能复杂制造国家重点实验室;
  • 出版日期:2019-02-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.294
  • 基金:国家自然科学基金资助项目(51775561)~~
  • 语种:中文;
  • 页:ZNGD201902008
  • 页数:7
  • CN:02
  • ISSN:43-1426/N
  • 分类号:60-66
摘要
为了研究海底天然气水合物绞吸式开采水力输送系统中管径、流速、体积分数和颗粒粒径对输送系统压力损失的影响规律,确定各参数的合理选择范围;建立输送管道三维流场模型,采用控制变量的方法,运用计算流体力学理论和Fluent仿真软件对输送管道内固液两相流场进行仿真分析。研究结果表明:输送系统压力损失梯度随管径的增大而减小;当管径增大到0.4 m时,继续增大管径对压力损失梯度影响越来越小;压力损失梯度随浆体流速的增大先减小后增大,存在1个最优流速,在2.5~4.0 m/s之间,且颗粒粒径和体积分数越大,对应的最优流速就越大,压力损失梯度随体积分数的增大呈线性增大;压力损失梯度随着颗粒粒径增大而增大,但增大幅度很小。
        To study the influence law between pressure loss of conveyor system and parameters of hydraulic transmission system for cutter-suction mining in submarine natural gas hydrate exploitation, such as diameter, velocity, volume fraction and particle size, and to determine the reasonable selection of the parameters, the three-dimensional flow field model of pipeline was established, and the method of controlling variables, the computational fluid dynamics theory and Fluent simulation software were used for numerical analysis in the solid liquid two-phase flow field of the pipeline. The results show that the pressure loss gradient of the conveying system decreases with the increase of the pipe diameter, and when the diameter of the pipe increases to 0.4 m, the effect of increasing the pipe diameter on pressure loss gradient is smaller and smaller. The pressure loss gradient decreases first and then increases with the increase of the flow velocity of the slurry, and there is an optimal velocity, which is between 2.5 m/s and 4.0 m/s, and the larger the particle size and volume fraction, the greater the corresponding optimal velocity. The pressure loss gradient increases linearly with the increase of volume fraction. The pressure loss gradient increases with the increase of particle size, but the increase is small.
引文
[1]MAKOGON Y F.Natural gas hydrates-a promising source of energy[J].Journal of Natural Gas Science and Engineering,2010,2(1):49-59.
    [2]RAJNAUTH J,BARRUFET M.Monetizing gas:focusing on developments in gas hydrate as a mode of transportation[J].Energy Science and Technology,2012,4(2):61-68.
    [3]MOHEBBI V,BEHBAHANI R M.Experimental study on gas hydrate formation from natural gas mixture[J].Journal of Natural Gas Science&Engineering,2014,18:47-52.
    [4]吴传芝,赵克斌,孙长青,等.天然气水合物开采研究现状[J].地质科技情报,2008,27(1):47-51.WU Chuanzhi,ZHAO Kebin,SUN Changqing,et al.Current research in natural gas hydrate production[J].Geological Science and Technology Information,2008,27(1):47-51.
    [5]刘建军,邵祖亮,郑永香.天然气水合物降压分解过程的数值模拟[J].西南石油大学学报(自然科学版),2017,39(1):80-90.LIU Jianjun,SHAO Zuliang,ZHENG Yongxiang.Numerical Simulation of the Decomposition of Natural Gas Hydrates by Depressurization[J].Journal of Southwest Petroleum University(Science&Technology Edition),2017,39(1):80-90.
    [6]徐纯刚,李小森,蔡晶,等.二氧化碳置换法模拟开采天然气水合物的研究进展[J].化工学报,2013,64(7):2309-2315.XU Chungang,LI Xiaosen,CAI Jin,et al.Advance on simulation exploitation of natural gas hydrate by replacement with CO2[J].Journal of Chemical Industry and Engineering.2013,64(7):2309-2315.
    [7]徐海良,林良程,吴万荣,等.海底天然气水合物绞吸式开采方法研究[J].中山大学学报(自然科学版),2011,50(3):48-52.XU Hailiang,LIN Liangcheng,WU Wanrong,et al.Cutter-suction Exploitation Mode of Marine Gas Hydrate[J].Transactions of the British Mycological Society,2011,50(3):48-52.
    [8]徐海良,孔维阳,杨放琼.天然气水合物在水力提升管道中的分解特性[J].天然气工业,2018,38(7):129-137.XU Hailiang,KONG Weiyang,YANG Fangqiong.Decomposition characteristics of natural gas hydrates in hydraulic lifting pipelines[J].Natural Gas Industry,2018,38(7):129-137.
    [9]CHRISTIAN F I,SANTIAGO M S,ALDO T B.A cost perspective for long distance ore pipeline water and energy utilization.Part II:effect of input parameter variability[J].International Journal of Mineral Processing,2013,122(122):54-58.
    [10]VáCLAV M.Predictive model for frictional pressure drop in settling-slurry pipe with stationary deposit[J].Powder Technology,2009,192(3):367-374.
    [11]VAN WIJK J M,TALMON A M,VAN RHEE C.Stability of vertical hydraulic transport processes for deep ocean mining:an experimental study[J].Ocean Engineering,2016,125:203-213.
    [12]黄中华,曹跃,谢雅.多金属硫化物颗粒水力提升性能仿真[J].机械设计与研究,2015,31(2):85-88.HUANG Zhonghua,CAO Yue,XIE Ya.Simulation of hydraulic lifting performance of polymetallic sulfide particles[J].Machine Design and Research,2015,31(2):85-88.
    [13]邱灏,曹斌,夏建新.粗颗粒物料管道水力输送不淤临界流速计算[J].水利水运工程学报,2016(6):103-108.QIU Hao,CAO Bin,XIA Jianxin.Non-silting critical velocity calculation of coarse-grained materials in hydraulic pipeline[J].Hydro-Science and Engineering,2016(6):103-108.
    [14]赵国景,夏建新,黄家桢.锰结核动态管道水力提升[J].矿冶工程,2000,20(3):18-24.ZHAO Guojing,XIA Jianxin,HUANG Jiazhen.Hydraulic lifting of dynamic pipeline for manganese nodules[J].Mining and Metallurgical Engineering,2000,20(3):18-24.
    [15]唐达生,肖红,宋跃文,等.深海粗颗粒矿石浮游速度的试验研究[J].矿冶工程,2016,36(3):1-8.TANG Dasheng,XIAO Hong,SONG Yuewen,et al.Experimental study on floating velocity of coarse ore particles in deep sea[J].Mining and Metallurgical Engineering,2016,36(3):1-8.
    [16]李万,钱忠东,郜元勇.4种湍流模型对混流式水轮机压力脉动模拟的比较[J].武汉大学学报(工学版),2013,46(2):174-179.LI Wan,QIAN Zhongdong,GAO Yuanyong.Comparison of pressure oscillation characteristics in a Francis hydraulic turbine with four different turbulence models[J].Engineering Journal of Wuhan University,2013,46(2):174-179.
    [17]徐海良,周刚,吴万荣,等.深海采矿储料罐输送设备固液两相流数值计算与分析[J].中南大学学报(自然科学版),2012,43(1):111-117.XU Hailiang,ZHOU Gang,WU Wanrong,et al.Numerical calculation and analysis of solid-liquid two-phase flow intank transporting equipment for deep-sea mining[J].Journal of Central South University(Science and Technology),2012,43(1):111-117.
    [18]喻黎明,邹小艳,谭弘,等.基于CFD-DEM耦合的水力旋流器水沙运动三维数值模拟[J].农业机械学报,2016,47(1):126-132.YU Liming,ZOU Xiaoyan,TAN Hong,et al.3D numerical simulation of water and sediment flow inhydrocyclone based on coupled CFD-DEM[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(1):126-132.
    [19]李秋龙.赤泥沉降槽内多相流动和絮凝沉降的数值仿真与优化[D].长沙:中南大学能源科学与工程学院,2014:26-27.LI Qiulong.Numerical simulation and optimization on multiphase flow and flocculation,sedimentation in the red mud thickener[D].Changsha:Central South University.School of Energy Science and Engineering,2014:26-27.
    [20]QI Nana,ZHANG Hu,ZHANG Kai,et al.CFD simulation of particle suspension in a stirred tank[J].Particuology,2013,11(3):317-326.
    [21]徐海良,陈旺,吴波,等.海底天然气水合物绞吸式开采切削头绞吸特性[J].四川大学学报(工程科学版),2016,48(6):126-131.XU Hailiang,CHEN Wang,WU Bo,et al.Characteristic of Cutting Head in Marine Gas Hydrate by Cutter Suction Exploitation[J].Journal of Sichuan University(Engineering Science Edition),2016,48(6):126-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700