用户名: 密码: 验证码:
生态因子对大理苍山种子植物多样性分布格局的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Ecological Factors on the Distribution Patterns of Seed Plant Diversity in Cangshan Mountain of Dali
  • 作者:杨涛 ; 尹志坚 ; 李新辉
  • 英文作者:Yang Tao;Yin Zhijian;Li Xinhui;College of Ecology and Soil &Water Conservation, Southwest Forestry University;Kunming Institute of Survey and Design,State Forestry Administration;
  • 关键词:物种多样性 ; 丰富度 ; α多样性 ; β多样性 ; 苍山
  • 英文关键词:species diversity;;richness;;α diversity;;β diversity;;Cangshan
  • 中文刊名:YNLX
  • 英文刊名:Journal of Southwest Forestry University(Natural Sciences)
  • 机构:西南林业大学生态与水土保持学院;国家林业局昆明勘察设计院;
  • 出版日期:2019-07-29
  • 出版单位:西南林业大学学报(自然科学)
  • 年:2019
  • 期:v.39;No.153
  • 基金:国家自然科学基金项目(31560063)资助;国家自然科学基金项目(3186020327)资助;; 全国第四次中药资源普查项目(201207002)资助
  • 语种:中文;
  • 页:YNLX201905011
  • 页数:9
  • CN:05
  • ISSN:53-1218/S
  • 分类号:72-80
摘要
运用物种丰富度、Shannon指数表征alpha(α)多样性,用Bray-curtis指数表征beta(β)多样性,同时运用距离矩阵多重回归和方差分解的方法,探讨大理苍山种子植物的α多样性和β多样性与年平均降水量、年平均温度、坡度、坡向、岩石类型和土壤类型等环境因子之间的关系。结果表明:苍山地区种子植物物种丰富度与属丰富度分布格局相同,且丰富度与海拔高度呈单峰曲线关系,属最大丰富度在海拔2 000 m左右,物种最大丰富度在海拔2 500 m左右;α多样性和β多样性与各环境因子之间显著相关;对α多样性来讲,年平均降水量和岩石类型联合的相对解释能力最大,两者共同解释比例为85%;β多样性的解释能力最强的为年平均降水量,其解释率为83%,岩性的解释率为78%,两者共同作用的解释率为88%。因此,本研究表明研究区域的种子植物多样性主要是由气候、土壤以及地形共同影响下形成的。无论是α还是β多样性,环境变量的解释量都占了绝大部分,故推测生态位作用对本区群落的形成和维持具有重要影响。
        Species richness, Shannon index to characterize alpha(α) diversity, Bray-curtis index to characterize beta(β) diversity and distance matrix multiple regression and variance decomposition methods were used to explore the relationship between α diversity and β diversity of seed plants in Dali Cangshan and environmental factors such as annual mean precipitation, annual mean temperature, slope, aspect, rock type and soil type. Results show that the species richness and genus richness distribution pattern of seed plants in Cangshan area are the same, and the richness has a single-peak curve relationship with altitude. The maximum abundance is about 2 000 m above sea level, and the maximum richness of species is about 2 500 m above sea level. There is a significant correlation between α diversity and β diversity and various environmental factors. For α diversity, the annual relative precipitation and rock type combination have the highest relative interpretation ability, and the common interpretation ratio is 85%. The most interpretative ability of β diversity is the annual average precipitation, the interpretation rate is 83%, the interpretation rate of lithology is 78%, and the interpretation rate of the 2 is 88%. Therefore,this study indicates that the diversity of seed plants in the study area is mainly formed by the combination of climate, soil and topography. Regardless of the α or β diversity, the explanatory variables of environmental variables account for the majority, so it is speculated that the niche effect has an important impact on the formation and maintenance of the community in this area.
引文
[1]Mallet J.Species:the units of biodiversity[J].Trends in Ecology&Evolution,1997,12(11):453-454.
    [2]Rahbek C.The relationship among area,elevation,and regional species richness in neotropical birds[J].The American Naturalist,1997,149(5):875-902.
    [3]McCain C M,Grytnes J A.Elevational gradients in species richness[M].Chichester:Encyclopedia of Life Sciences(ELS),2010.
    [4]Arnan X,CerdáX,Retana J.Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic,functional,and phylogenetic diversity in European ants[J].Peer J,2015,3:e1241.
    [5]De Caceres M,Legendre P,Valencia R,et al.The variation of tree beta diversity across a global network of forest plots[J].Global Ecology and Biogeography,2012,21(12):1191-1202.
    [6]云南省林业调查规划院大理分院.云南省大理市森林资源规划设计调查报告[R].大理:云南省林业调查规划院大理分院,2005.
    [7]穆静秋.大理苍山生物多样性现状与保护措施[J].林业调查规划,2006,31(1):79-82.
    [8]尹志坚.大理苍山种子植物区系的研究[D].北京:中国科学院研究生院,2012.
    [9]Vavrek M J.Fossil:palaeoecological and palaeogeographical analysis tools[J].Palaeontologia Electronica,2011,14(1):1-16.
    [10]邬伦,刘瑜,张晶,等.地理信息系统:原理、方法和应用[J].北京:科学出版社,2001.
    [11]Chamberland J M,Lanthier G,Boisclair D.Comparison between electrofishing and snorkeling surveys to describe fish assemblages in Laurentian streams[J].Environmental Monitoring and Assessment,2014,186(3):1837-1846.
    [12]Peres-Neto P R,Legendre P,Dray S,et al.Variation partitioning of species data matrices:estimation and comparison of fractions[J].Ecology,2006,87(10):2614-2625.
    [13]曾觉民.云南自然森林分类系统及地理分布研究[J].西南林业大学学报(自然科学),2018,38(6):1-18,231.
    [14]唐志尧,方精云.植物物种多样性的垂直分布格局[J].生物多样性,2004,12(1):20-28.
    [15]Lieberman D,Lieberman M,Peralta R,et al.Tropical forest structure and composition on a large-scale altitudinal gradient in costa rica[J].The Journal of Ecology,1996,84(2):137-152.
    [16]Rahbek C.The elevational gradient of species richness:a uniform pattern?[J].Ecography,1995,18(2):200-205.
    [17]刘彬,布买丽娅木·吐如汗,艾比拜姆·克热木,等.新疆天山南坡中段种子植物区系垂直分布格局分析[J].植物科学学报,2018,36(2):191-202.
    [18]Marrs R H,Proctor J,Heaney A,et al.Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in costa rica[J].The Journal of Ecology,1988,76(2):466-482.
    [19]Tian Z H,Bai H Y,Su K,et al.Reconstruction and response of tree-ring width chronology at various altitudes to climate change on Taibai Mountain[C]//Proceedings of the 6th International Conference on Informatics,Environment,Energy and Applications,New York:ACM,2017:60-66.
    [20]Whittaker R H.Vegetation of the Siskiyou mountains,Oregon and California[J].Ecological Monographs,1960,30(3):279-338.
    [21]陈超男,朱连奇,田莉,等.秦巴山区植被覆盖变化及气候因子驱动分析[J].生态学报,2019,39(9):1-9.
    [22]王国宏.祁连山北坡中段植物群落多样性的垂直分布格局[J].生物多样性,2002,10(1):7-14.
    [23]董冬,许小天,周志翔,等.安徽九华山风景区古树群落主要种群生态位的动态变化[J].生态学杂志,2019,38(5):1292-1304.
    [24]邢亚蕾,魏天兴,葛根巴图.鹫峰国家森林公园残次林物种多样性及生态位特征[J].植物研究,2015,35(6):915-922.
    [25]杨绣坤.自然保护区对保护生物多样性的意义[J].农业与技术,2018,38(6):253.
    [26]冯建孟,胡小康.环境因子对滇西北地区植物多样性分布格局的影响[J].信阳师范学院学报(自然科学版),2019,32(01):62-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700