用户名: 密码: 验证码:
虉草适应湿地环境的解剖结构和组织化学特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anatomy and histochemistry features of Phalaris arundinacea adapted to wetland environments
  • 作者:王晓娥 ; 张梵 ; 张霞 ; 周存宇 ; 杨朝东
  • 英文作者:WANG Xiao-e;ZHANG Fan;ZHANG Xia;ZHOU Cun-yu;YANG Chao-dong;College of Horticulture and Gardening,Yangtze University;Institute of Plant Ecology and Environmental Restoration,Yangtze University;
  • 关键词:虉草 ; 解剖结构 ; 质外体屏障结构 ; 组织化学
  • 英文关键词:Phalaris arundinacea;;anatomy;;apoplastic barriers;;histochemistry
  • 中文刊名:CYXB
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:长江大学园艺园林学院;长江大学植物生态与环境修复研究所;
  • 出版日期:2019-01-20
  • 出版单位:草业学报
  • 年:2019
  • 期:v.28;No.162
  • 基金:中国科学院武汉植物园水生植物与流域生态重点实验室开放基金(2017)资助
  • 语种:中文;
  • 页:CYXB201901011
  • 页数:9
  • CN:01
  • ISSN:62-1105/S
  • 分类号:89-97
摘要
为研究虉草适应湿地环境的结构特征,探讨了该植物不定根、根状茎、直立茎和叶的解剖结构、组织化学及其质外体屏障结构的通透性生理。利用光学显微镜和荧光显微镜对虉草进行了解剖学和组织化学研究。结果表明:1)虉草不定根解剖结构由外而内分别为表皮、外皮层、皮层、内皮层、中央为木质部和厚壁组织;茎结构由外而内分别为角质层、表皮、周缘厚壁机械组织层、皮层、具维管束厚壁机械组织层和髓腔。2)不定根具栓质化和木质化内皮层和外皮层组成的屏障结构;茎具角质层、栓质化和木质化周缘厚壁组织层和厚壁组织层;根状茎具内、外皮层,直立茎仅具外皮层。3)虉草体内气腔包括不定根中通气组织,茎皮层气腔和髓腔,及叶鞘气腔。虉草的机械组织结构、屏障结构和气腔是其适应湿地环境的重要结构特征,该研究为今后选择湿地生态修复的植物物种提供依据。
        Reed canarygrass(Phalaris arundinacea)is a perennial herb adapted to wetland environments.The current work explores the anatomy and histochemistry of the adventitious roots,stems(rhizomes and culms),leaves and the permeability of apoplastic barriers of reed canarygrass.The anatomy and histochemistry of P.arundinacea were studied using an optical microscope and fluorescent microscope.Sections were stained with Sudan red 7B(SR7B)for suberin lamellae,with berberine hemisulfate-aniline blue(BAB)for casparian bands and lignified cell walls,phloroglucinol-HCl(Pg)for lignin and berberine hemisulfate-potassium thiocyanate for apoplastic permeability.Concentrated sulfuric acid digestion(AD)was used to detect the wavy casparian bands in young rhizomes and culms.The adventitious roots had a primary structure comprising epidermis,exodermis,cortex,endodermis and vascular cylinder with sclerenchyma;the stems comprised a cuticle,epidermis,peripheral mechanical ring,exodermis,cortex,endodermis,sclerenchyma ring with vascular bundles and pith cavity.The apoplastic barriers consisted of adventitious roots with a suberized and lignified endodermis and an exodermis,stems possessed a cuticle,suberized and lignified peripheral mechanical ring and a sclerenchyma ring,and rhizomes with endodermis and exodermis,culms only with exodermis.The air space consisted of pith cavities and cortical cavities in the stems,and aerenchyma in roots and leaves.This research revealed that reed canarygrass has the key constitutive,structural and histochemical features in roots and stems that allow it to grow in wetlands,be protected against oxygen leakage from aerenchyma,with-stand seasonal flooding and consequently,widely distributed.The anatomical structures and histochemical features of these perennial,rhizomatous grasses enhance our awareness of the biology of this species in native Asian and North American invaded habitats to select species for the restoration of degraded wetland of the Jianghan Floodplain and Three Gorges Reservoir Region of the Yangtze River.
引文
[1] Anderson D E.Taxonomy and distribution of the genus Phalaris.Iowa State Journal of Science,1961,36:1-96.
    [2] Gomm F B.Accumulation of NO3and NH4in reed canarygrass.Agronomy Journal,1979,71(4):627-630.
    [3] Grabber J H,Allinson D W.Anatomical structure and digestibility of reed canarygrass cultivars and hybrid ryegrass.Grass and Forage Science,2010,47(4):400-404.
    [4] Apfelbaum S I,Sams C E.Ecology and control of reed canary grass(Phalaris arundinacea L.).Natural Areas Journal,1987,7:69-74.
    [5] Barnes W J.The rapid growth of a population of reed canarygrass(Phalaris arundinacea L.)and its impact on some riverbottom herbs.Journal of the Torrey Botanical Society,1999,126(2):133-138.
    [6] Morrison S L,Molofsky J.Environmental and genetic effects on the early survival and growth of the invasive grass Phalaris arundinacea.Revue Canadienne De Botanique,1999,77(10):1447-1453.
    [7] Singh S,Kirkwood R C,Marshall G.Biology and control of Phalaris minor Retz(Litterseed canarygrass)in wheat.Crop Protection,1999,18(1):1-16.
    [8] Als G,Ferdy J B,Molofsky J.Genetic composition and morphological variation among populations of the invasive grass,Phalaris arundinacea.Canadian Journal of Botany,2002,80(7):779-785.
    [9] Lavergne S,Molofsky J.Reed canary grass(Phalaris arundinacea)as a biological model in the study of plant invasions.Critical Reviews in Plant Sciences,2004,23(5):415-429.
    [10] Brodersen C,Lavergne S,Molofsky J.Genetic variation in photosynthetic characteristics among invasive and native populations of reed canarygrass(Phalaris arundinacea).Biological Invasions,2008,10(8):1317-1325.
    [11] Spyreas G,Wilm B W,Plocher A E,et al.Biological consequences of invasion by reed canary grass(Phalaris arundinacea).Biological Invasions,2010,12(5):1253-1267.
    [12] Martina J P,Ende C N V.Highly plastic response in morphological and physiological traits to light,soil-N and moisture in the model invasive plant,Phalaris arundinacea.Environmental&Experimental Botany,2012,82(82):43-53.
    [13] Waring E F,Maricle B R.Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding.Environmental&Experimental Botany,2012,77(2):77-86.
    [14] Yang C D,Zhang X,Zhou C Y,et al.Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River,China.Flora,2011,206(7):653-661.
    [15] Yang C D,Zhang X,Li J K,et al.Anatomy and histochemistry of roots and shoots in wild rice(Zizania latifolia Griseb.).Journal of Botany,2014:Article ID 181727.
    [16] Zhang X,Yang C D,Seago Jr J L.Anatomical and histochemical traits of roots and stems of Artemisia lavandulaefolia and A.selengensis(Asteraceae)in the Jianghan Floodplain,China.Flora,2018,239:87-97.
    [17] Lenzewski N,Mueller P,Meier R J,et al.Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmannaaplanar optode study of belowground gas exchange between plants and sediment.New Phytologist,2018,doi:10.1111/nph.14973.
    [18] Yang C D,Zhang X.Permeability and supplement structures of stems of Paspalum distichum.Bulletin of Botanical Research,2013,33(5):564-568.杨朝东,张霞.双穗雀稗(Paspalum distichum)通透性生理和茎解剖结构补充研究.植物研究,2013,33(5):564-568.
    [19] Zhang X,Yang C D,Ning G G.The developmental comparison of apoplastic barriers in Cynodon dactylon and Paspalum distichumroots.Hubei Agricultural Sciences,2013,52(20):4991-4994.张霞,杨朝东,宁国贵.狗牙根和双穗雀稗根中质外体屏障结构发育过程的比较研究.湖北农业科学,2013,52(20):4991-4994.
    [20] Soukup A,Armstrong W,Schreiber L,et al.Apoplastic barriers to radial oxygen loss and solute penetration:A chemical and functional comparison of the exodermis of two wetland species,Phragmites australis and Glyceria maxima.New Phytologist,2007,173:264-278.
    [21] Wang H F,Zeng B,Li Y,et al.Effects of long-term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir region.Chinese Journal of Plant Ecology,2008,32(5):977-984.王海锋,曾波,李娅,等.长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响.植物生态学报,2008,32(5):977-984.
    [22] Jensen W A.Botanical histochemistry-principles and practice.San Francisco,CA:W H Freeman and Company,1962.
    [23] Brundrett M C,Kendrick B,Peterson C A.Efficient lipid staining in plant material with Sudan red 7Bor Fluorol yellow 088in polyethylene glycol-glycerol.Biotechnic and Histochemistry,1991,66(3):111-116.
    [24] Seago Jr J L,Peterson C A,Enstone D E,et al.Development of the endodermis and hypodermis of Typha glauca Godr.and T.angustifolia L.roots.Canadian Journal of Botany,1999,77(1):122-134.
    [25] Brundrett M C,Enstone D E,Peterson C A.A berberine-aniline blue fluorescent staining procedure for suberin,lignin and callose in plant tissue.Protoplasma,1988,146(2/3):133-142.
    [26] Johansen D A.Plant microtechnique.New York:McGraw-Hill Book Company,inc,1940.
    [27] Meyer C J,Seago J L,Peterson C A.Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots.Annals of Botany,2009,103(5):687-702.
    [28] Meyer C J,Peterson C A.Casparian bands occur in the periderm of Pelargonium hortorumstem and root.Annals of Botany,2011,107(4):591-598.
    [29] Yang C D,Li S F,Yao L,et al.A study of anatomical structure and apoplastic barrier characteristics of Hydrocotyle sibthorpioides.Acta Prataculturae Sinica,2015,24(7):139-145.杨朝东,李守峰,姚兰,等.天胡荽的解剖和屏障结构特征研究.草业学报,2015,24(7):139-145.
    [30] Yang C D,Li S F,Deng S M,et al.The study on anatomy and apoplastic barrier characters of Imperata cylindrica.Acta Prataculturae Sinica,2015,24(3):213-218.杨朝东,李守峰,邓仕明,等.白茅解剖结构和屏障结构特征研究.草业学报,2015,24(3):213-218.
    [31] Zhang X,Hu L J,Zhou C Y,et al.Studies on anatomy and apoplastic barrier histochemistry characters of Oenanthe javanica(Bl.)DC.adapted to wetland environment.China Vegetables,2016,7:52-58.
    [32] Mc Manus H A,Seago J L,Marsh L C.Epifluorescent and histochemical aspects of shoot anatomy of Typha latifolia L.,Typha angustifolia L.and Typha glauca Godr.Annals of Botany,2002,90(4):489-493.
    [33] Ranathunge K,Lin J,Steudle E,et al.Stagnant deoxygenated growth enhances root suberization and lignifications,but differentially affects water and NaCl permeabilities in rice(Oryza sativa L.)roots.Plant Cell Environment,2011,34:1223-1240.
    [34] Watanabe H,Saigusa M,Morita S.Identification of casparian bands in the mesocotyl and lower internodes of rice(Oryza sativa L.)seedlings using fluorescence microscopy.Plant Production Science,2006,9:390-394.
    [35] De Simone O,Haase K,Müller E,et al.Apoplastic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species.Plant Physiologist,2003,132:206-217.
    [36] Vecchia F D,Cuccato F,Rocca N L,et al.Endodermis-like sheaths in the submerged freshwater macrophyte Ranunculus trichophyllus Chaix.Annals of Botany,1999,83:93-97.
    [37] Seago J L,Marsh L C,Stevens K J,et al.A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma.Annals of Botany,2005,96(4):565-579.
    [38] Vartapetian B B,Jackson M B.Plant adaptations to anaerobic stress.Annals of Botany,1997,79(1):3-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700