用户名: 密码: 验证码:
高镁贫镍红土矿煤基还原制备镍铁合金
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Ferro-Nickel Alloy from High Magnesium Low Nickel Laterite Ore in Coal-based Direct Reduction Smelting Process
  • 作者:王宇鲲 ; 魏永刚 ; 李博 ; 周世伟 ; 丁志广
  • 英文作者:WANG Yu-kun;WEI Yong-gang;LI Bo;ZHOU Shi-wei;DING Zhi-guang;State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Faculty of Metallurgy and Energy Engineering,Kunming Universikelty of Science and Technology;
  • 关键词:高镁贫镍红土矿 ; 煤基还原 ; 镍铁合金
  • 英文关键词:high magnesium low nickel laterite;;coal-based direct reduction;;ferro-nickel alloy
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:省部共建复杂有色金属资源清洁利用国家重点实验室昆明理工大学冶金与能源工程学院;
  • 出版日期:2016-12-12 10:28
  • 出版单位:过程工程学报
  • 年:2016
  • 期:v.16
  • 基金:国家自然科学基金资助项目(编号:U1302274;51304091);; 云南省应用基础研究基金资助项目(编号:2013FZ007;2013FD009)
  • 语种:中文;
  • 页:HGYJ201606024
  • 页数:6
  • CN:06
  • ISSN:11-4541/TQ
  • 分类号:156-161
摘要
以含Ni 0.82%、含MgO 31.49%的高镁贫镍红土矿为原料,采用煤基直接还原熔炼方法制备镍含量高于7%的镍铁合金,对产物进行了表征,通过正交实验确定了最优工艺条件.结果表明,原矿主要由蛇纹石、石英和氧化镁组成,81.49%的镍元素取代镁或以吸附态分布于蛇纹石中.温度高于1500℃熔炼过程才能顺利进行.通过L_9(3~3)正交实验确定的最优工艺条件为:熔炼温度1600℃,配碳比C/O=2.0,焙烧时间45 min.该条件下制备出了镍品位7.19%、镍铁含量84.23%的球状镍铁合金,Ni回收率为82%.
        The high magnesium(31.49% Mg O), low nickel(0.82% Ni) laterite ore was used to extract the high grade ferro-nickel alloy by the coal-based direct reduction method. The product was analyzed, the optimal conditions were obtained by orthogonal experiments. The results showed that the content of Ni in the ferro-nickel alloy is more than 7%. The laterite ore mainly consists of serpentine, quartz and magnesium oxide phases. In addition, 81.49% Ni within raw ore is distributed in serpentine, by substitution for Mg and/or by adsorption. Smelting could be occurred completely when the roasting temperature above 1 500 ℃. The orthogonal experiments L_9(3~3) were carried out to obtain the optimum technological parameters. A ferro-nickel alloy, which contains 7.19% Ni, 84.23% ferro-nickel can be obtained at the roasting temperature 1 600 ℃ for 45 min, with atomic ratio C/O 2.0, the recovery rate of nickel is 82%.
引文
[1]李洋洋,李金辉,张云芳,等.红土镍矿的开发利用及相关研究现状[J].材料导报,2015,29(17):79-83.Li Y Y,Li J H,Zhang Y F,et al.Current Status of Nickel Laterite Ore Utilization Involving Industry and Researches[J].Materials Review,2015,29(17):79-83.
    [2]肖振民.世界红土型镍矿开发和高压酸浸技术应用[J].中国矿业,2002,(1):57-59.Xiao Z M.Status of Exploitation of Laterite Type Nickel Ore and Application of High Pressure Acid Leaching Technology in the World[J].China Mining Magazine,2002,(1):57-59.
    [3]何焕华.世界镍工业现状及发展趋势[J].有色冶炼,2001,12(6):1-3.He H H.Status and Development Trend of World Nickel Industry[J]Non-Ferrous Smelting,2001,12(6):1-3.
    [4]王成彦,尹飞,陈永强,等.国内外红土镍矿处理技术及进展[J].中国有色金属学报,2008,18(1):1-8.Wang C Y,Yin F,Chen Y Q,et al.Worldwide Processing Technologies and Progress of Nickel Laterites[J].The Chinese Journal of Nonferrous Metals,2008,18(1):1-8.
    [5]曾新民.金川硫化铜镍矿矿石特性与可浮性关系[J].矿冶,2005,14(3):16-19.Zeng X M.Correlation between the Characteristics of Jinchuan Copper-Nickel Sulphide and Its Floatability[J].Mining and Metallurgy,2005,14(3):16-19.
    [6]罗仙平,冯博,周贺鹏,等.铜镍硫化矿选矿技术进展[J].有色金属:选矿部分,2013,(12):12-14.Luo X P,Feng B,Zhou H P,et al.Progress in Mineral Processing Technology of Copper Nickel Sulphide Ore[J].Non-Ferrous Metal:Mineral Processing Part,2013,(12):12-14.
    [7]彭犇,清瑞.红土镍矿利用与研究的现状与发展[J].有色金属,2011,1(4):15-22.Peng B,Qing R.Status and Development of Laterite Nnickel Ore[J].Non-Ferrous Metal,2011,1(4):15-22.
    [8]庞建明,郭培民,赵沛,等.火法冶炼红土镍矿技术分析[J].钢铁研究学报,2011,23(6):1-4.Pang J M,Guo P M,Zhao P,et al.Analysis on Pyrometallurgy Technologies of Laterite-Nickel Ore[J].Journal of Iron and Steel Research,2011,23(6):1-4.
    [9]付伟,周永章,陈远荣,等.东南亚红土镍矿床地质地球化学特征及成因探讨—以印尼苏拉威西岛Kolonodale矿床为例[J].地学前缘,2010,17(2):127-139.Fu W,Zhou Y Z,Chen Y R,et al.Geological and Geochemical Characteristics of Laterite Nickel Deposit and Ore Genesis—A Case Study of Kolonodale Deposit in Indonesia Sulawesi,Southeast Asia[J].Earth Science Frontiers,2010,17(2):127-139.
    [10]Zhu D Q,Cui Y,Hapugoda S,et al.Mineralogy and Crystal Chemistry of a Low Grade Nickel Lateriteore[J].Transactions of Nonferrous Metals Society of China,2012,22(4):907-916.
    [11]李金辉,李洋洋,郑顺,等.红土镍矿冶金综述[J].有色金属科学与工程,2015,2(1):35-40.Li J H,Li Y Y,Zheng S,et al.Research Review of Laterite Nickel Ore Metallurgy[J].Nonferrous Metals Science and Engineering,2015,2(1):35-40.
    [12]及亚娜,孙体昌,蒋曼,等.红土镍矿提镍工艺进展[J].矿产保护与利用,2011,(2):43-49.Ji Y N,Sun T C,Jiang M,et al.Advance in Extraction of Nickel from Laterite Nickel Ore[J].Conservation and Utilization of Mineral Resources,2011,(2):43-49.
    [13]Rao M J,Li G H,Jiang T,et al.Carbothermic Rduction of Nickeliferous Lterite Ores for Nnickel Pig Iron Production in China:A Review[J].JOM,2013,65(11):1573-1583.
    [14]Li G H,Shi T M,Rao M J,Beneficiation of Nickeliferous Laterite by Reduction Roasting in the Presence of Sodium Sulfate[J].Miner.Eng.,2012,32(No.):19-26.
    [15]张友平,周渝生,李肇毅,等.我国不锈钢原料资源和生产进展[J].特殊钢,2008,29(6):17-19.Zhang Y P,Zhou Y S,Li Z Y,et al.Raw Material Resource for Stainless Steel Production and Its Progress in China[J].Special Steel,2008,29(6):17-19.
    [16]曹志成,孙体昌,杨慧芬,等.红土镍矿直接还原焙烧磁选回收铁镍[J].北京科技大学学报,2010,32(6):708-712.Chao Z C,Sun T C,Yang H F,et al.Recovery of Iron and Nickel from Nickel Laterite Ore by Direct Reduction Roasting and Magnetic Separation[J].Journal of University of Science and Technology Beijing,2010,32(6):708-712.
    [17]林重春,张建良,黄冬华,等.红土镍矿含碳球团深还原-磁选富集镍铁工艺[J].北京科技大学学报,2011,33(3):270-275.Lin C C,Zhang J L,Huang D H,et al.Enrichment of Nickel and Iron from Nickel Laterite Ore/Coal Composite Pellets by Deep Reduction and Magnetic Separation[J].Journal of University of Science and Technology Beijing,2011,33(3):270-275.
    [18]梁威,王晖,符剑刚,等.从低品位红土镍矿中高效回收镍铁[J].中南大学学报,2011,42(8):2173-2177.Liang W,Wang H,Fu J G,et al.High Recovery of Ferro-Nickel from Low Grade Nickel Laterite Ore[J].Journal of Central South University,2011,42(8):2173-2177.
    [19]余群波,哀朝新,范艳青,等.球团配碳比对红土矿直接还原镍铁颗粒长大特性的影响[J].有色金属(冶炼部分),2011,(8):1-3.Yu Q B,Ai C X,Fan Y Q,et al.Effect of C/O Ratio of Pelletizing on Characteristics of Grain Growth of Ferronickel in Direct Reduction of Laterite[J].Non-Ferrous Metal:Extractive Matallurgy,2011,(8):1-3.
    [20]李好泽,郭汉杰.红土镍矿预还原焙烧的研究[J].铁合金,2014,45(4):40-45.Li H Z,Guo H J.Research on Pre-reduction and Roasting of Laterite[J].Ferro-Alloys,2014,45(4):40-45.
    [21]李博,魏永刚,王华,等.干燥过程中硅镁镍矿的作用机制及其相变特征[J].中国有色金属学报,2013,(5):1440-1446.Li B,Wei Y G,Wang H,et al.Action Mechanism and Phase Transformation Characteristics of Garnierite in Drying Process[J].The Chinese Journal of Nonferrous Metals,2013,(5):1440-1446.
    [22]刘志国,孙体昌,高恩霞,等.蛇纹石矿物的高温相变对红土镍矿直接还原的影响[J].中国有色金属学报,2015,(5):1332-1338.Liu Z G,Sun T C,Gao E X,et al.Effect of High-temperature Phase Transition of Serpentine Mineral on Direct Reduction Roasting of Laterite Nickel Ore[J].The Chinese Journal of Nonferrous Metals,2015,(5):1332-1338.
    [23]马小波.红土镍矿焙烧还原熔炼生产镍铁的研究[D].长沙:中南大学,2010.28-29,36-37.Ma X B.Study on Preparing Ferronickel from Laterite by RoastingReducing Smelting Method[D].Changsha:Central South University,2010.28-29,36-37.
    [24]李博,魏永刚,王华.红土镍矿的固相还原动力学[J].过程工程学报,2011,11(5):767-771.Li B,Wei Y G,Wang H.Solid State Deoxidization Kinetics of Nickel Laterite Ore[J].The Chinese Journal of Process Engineering,2011,11(5):767-771.
    [25]Kawahara M,Toguri J M,Bergman R A.Reducibility of Laterite Ores[J].Matall.Trans.B,1988,19(2):181-182.
    [26]袁秋刚.红土镍矿电炉冶炼工艺低钙渣系性质研究[D].重庆:重庆大学,2014.20-22Yuan Q G.Research on the Properties of Slag with Low Lime in Nickel Laterite Smelting Process with Electric Furnace[D].Chongqing:Chongqing University,2014.20-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700