用户名: 密码: 验证码:
用于润湿性控制的Stavax钢基材的皮秒激光表面纹理处理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Picosecond Laser Surface Texturing of a Stavax Steel Substrate for Wettability Control
  • 作者:Xincai ; Wang ; 郑宏宇 ; Yinchi ; Wan ; Wenhe ; Feng ; Yee ; Cheong ; Lam
  • 英文作者:Xincai Wang;Hongyu Zheng;Yinchi Wan;Wenhe Feng;Yee Cheong Lam;Singapore Institute of Manufacturing Technology (SIMTech),A*STAR;SIMTech-NTU Joint Laboratory (Precision Machining),Nanyang Technological University;School of Mechanical Engineering,Shandong University of Technology;
  • 关键词:皮秒激光 ; 表面纹理处理 ; Stavax钢 ; 高分子聚合物 ; 疏水性
  • 英文关键词:Picosecond laser;;Surface texturing;;Stavax steel;;Polymer;;Hydrophobicity
  • 中文刊名:GOCH
  • 英文刊名:工程(英文)
  • 机构:Singapore Institute of Manufacturing Technology (SIMTech),A*STAR;SIMTech-NTU Joint Laboratory (Precision Machining),Nanyang Technological University;School of Mechanical Engineering,Shandong University of Technology;
  • 出版日期:2018-12-15
  • 出版单位:Engineering
  • 年:2018
  • 期:v.4
  • 基金:the Agency for Science, Technology and Research (A*STAR) of Singapore for financial support
  • 语种:中文;
  • 页:GOCH201806012
  • 页数:13
  • CN:06
  • ISSN:10-1244/N
  • 分类号:159-171
摘要
在本文中,笔者采用皮秒激光来制造Stavax钢基板的表面纹理,此钢基板为制造各种高分子聚合物产品模具的关键材料。在Stavax钢基板上主要有3种类型的表面纹理:周期性波纹、微凸块的双尺度分层二维阵列以及有纳米波纹的微坑阵列。经激光处理后的Stavax钢基板表面的润湿性从其原始的亲水性转变为疏水性,甚至在暴露于空气后具有超疏水性。研究结果清晰地表明,此超疏水性主要是由于表面纹理造成的。超快激光诱导的催化效果可能在改变表面化学性质方面起到次要作用,从而降低了表面能。随后,将金属磨具表面上的经激光处理的表面纹理通过高分子聚合物注射成型工艺复制到聚丙烯基底。由此,聚丙烯模具表面的润湿性从原始的亲水性变成疏水性。此开发工艺在改善塑料制品的湿润控制性和易清洗性方面具有一定潜能。
        In this investigation, a picosecond laser was employed to fabricate surface textures on a Stavax steel substrate, which is a key material for mold fabrication in the manufacturing of various polymer products.Three main types of surface textures were fabricated on a Stavax steel substrate: periodic ripples, a two-scale hierarchical two-dimensional array of micro-bumps, and a micro-pits array with nanoripples. The wettability of the laser-textured Stavax steel surface was converted from its original hydrophilicity into hydrophobicity and even super-hydrophobicity after exposure to air. The results clearly show that this super-hydrophobicity is mainly due to the surface textures. The ultrafast laserinduced catalytic effect may play a secondary role in modifying the surface chemistry so as to lower the surface energy. The laser-induced surface textures on the metal mold substrates were then replicated onto polypropylene substrates via the polymer injection molding process. The surface wettability of the molded polypropylene was found to be changed from the original hydrophilicity to superhydrophobicity. This developed process holds the potential to improve the performance of fabricated plastic products in terms of wettability control and easy cleaning.
引文
[1]Johnson RE Jr,Dettre RH,Brandreth DA.Dynamic contact angles and contactangle hysteresis.J Colloid Interface Sci 1977;62(2):205-12.
    [2]Wenzel RN.Surface roughness and contact angle.J Phys Colloid Chem 1949;53(9):1466-7.
    [3]Cassie BD,Baxter S.Wettability of porous surfaces.Trans Faraday Soc1944;40:546-50.
    [4]Li J,Fu J,Cong Y,Wu Y,Xue LJ,Han YC.Macroporous fluoropolymeric films templated by silica colloidal assembly:a possible route to super-hydrophobic surfaces.Appl Surf Sci 2006;252(6):2229-34.
    [5]Kim SH,Kim JH,Kang BK,Uhm HS.Superhydrophobic CFxcoating via in-line atmospheric RF plasma of He-CF4-H2.Langmuir 2005;21(26):12213-7.
    [6]Teshima K,Sugimura H,Inoue Y,Takai O,Takano A.Transparent ultra waterrepellent poly(ethylene terephthalate)substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating.Appl Surf Sci 2005;244(1-4):619-22.
    [7]Wagterveld RM,Berendsen CWJ,Bouaidat S,Jonsmann J.Ultralow hysteresis superhydrophobic surfaces by excimer laser modification of SU-8.Langmuir2006;22(26):10904-8.
    [8]Wong W,Chan K,Yeung KW,Lau KS.Surface structuring of poly(ethylene terephthalate)by UV excimer laser.J Mater Process Technol 2003;132(1-3):114-8.
    [9]Kulinich SA,Farzaneh M.Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers.Surf Sci 2004;573(3):379-90.
    [10]Schondelmaier D,Cramm S,Klingeler R,Morenzin J,Zilkens C,Eberhardt W.Orientation and self-assembly of hydrophobic fluoroalkylsilanes.Langmuir2002;18(16):6242-5.
    [11]Vorobyev Y,Guo CL.Multifunctional surfaces produced by femtosecond laser pulses.J Appl Phys 2015;117(3):033103.
    [12]Kietzig AM,Hatzikiriakos SG,Englezos P.Patterned superhydrophobic metallic surfaces.Langmuir 2009;25(8):4821-7.
    [13]Wu PH,Cheng CW,Chang CP,Wu TM,Wang JK.Fabrication of large-area hydrophobic surfaces with femtosecond-laser-structured molds.J Micromech Microeng 2011;21(11):115032.
    [14]Tang M,Shim V,Pan ZY,Choo YS,Hong MH.Laser ablation of metal substrates for super-hydrophobic effect.J Laser Micro Nanoeng 2011;6(1):6-9.
    [15]Kietzig AM,Mirvakili MN,Kamal S,Englezos P,Hatzikiriakos SG.Laserpatterned super-hydrophobic pure metallic substrates:Cassie to Wenzel wetting transitions.J Adhes Sci Technol 2011;25:2789-809.
    [16]Moradi S,Kamal S,Englezos P,Hatzikiriakos SG.Femtosecond laser irradiation of metallic surfaces:effects of laser parameters on superhydrophobicity.Nanotechnology 2013;24(41):415302.
    [17]Her TH,Finlay RJ,Wu C,Deliwala S,Mazur E.Microstructuring of silicon with femtosecond laser pulses.Appl Phys Lett 1998;73(12):1673-5.
    [18]Wang B,Wang X,Zheng H,Lam YC.Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation.Nanomaterials 2015;5(3):1442-53.
    [19]Toosi SF,Moradi S,Kamal S,Hatzikiriakos SG.Superhydrophobic laser ablated PTFE substrates.Appl Surf Sci 2015;349:715-23.
    [20]Li ZL,Chu PL,Zheng HY,Lim GC.Process development of laser machining of carbon fibre reinforced plastic composites.In:Proceedings of the International Congress on Applications of Lasers&Electro-Optics(ICALEO);2008 Oct 20-23;Temecula,CA,USA;2008.
    [21]Long J,Zhong M,Fan P,Gong D,Zhang H.Wettability conversion of ultrafast laser structured copper surface.J Laser Appl 2015;27(S2):S29107.
    [22]Wang XC,Wang B,Xie H,Zheng HY,Lam YC.Picosecond laser micro/nano surface texturing of nickel for superhydrophobicity.J Phys D Appl Phys2018;51(11):115305.
    [23]Racˇiukaitis G,Brikas M,Gecˇys P,Voisiat B,Gedvilas M.Use of high repetition rate and high power lasers in microfabrication:how to keep the efficiency high?J Laser Micro Nanoeng 2009;4(3):186-91.
    [24]Zhou GS,Fauchet PM,Siegman AE.Growth of spontaneous periodic surfacestructures on solids during laser illumination.Phys Rev B Condens Matter1982;26(10):5366-81.
    [25]Preston JS,Sipe JE,Sipe JE,van Driel HM.Pattern formation during laser melting of silicon.Phys Rev B Condens Matter 1989;40(6):3942-54.
    [26]Isenor NR.CO2laser-produced ripple patterns on NixP1àxsurfaces.Appl Phys Lett 1977;31:148-50.
    [27]Miller JC,Haglund RFJ,editors.Laser ablation and desorption.Amsterdam:Elsevier Inc.;1997.
    [28]Tamaura Y,Tabata M.Complete reduction of carbon dioxide to carbon using cation-excess magnetite.Nature 1990;346(6281):255-6.
    [29]Zhang CL,Li S,Wang LJ,Wu TH,Peng SY.Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite:I.preparation,characterization of magnetite,and its activity of decomposing carbon dioxide.Mater Chem Phys 2000;62(1):44-51.
    [30]Zhang CL,Li S,Wang LJ,Wu TH,Peng SY.Studies on the decomposing carbon dioxide into carbon with oxygen-deficient magnetite:II.the effects of properties of magnetite on activity of decomposition CO2and mechanism of the reaction.Mater Chem Phys 2000;62(1):52-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700