用户名: 密码: 验证码:
主动式电流体微槽平板热管的理论分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Theoretical Analysis of Active Mini-Groove Flat Heat Pipe Based on Electrohydrodynamics
  • 作者:辛菲 ; 马挺 ; 王秋旺
  • 英文作者:XIN Fei;MA Ting;WANG Qiu-Wang;Key Laboratory of Thermo-Fluid Science and Engineering, MOE, Xi'an Jiaotong University;
  • 关键词:微槽平板热管 ; 数学模型 ; 电流体力学EHD ; 场强 ; 传热能力
  • 英文关键词:mini-groove flat heat pipe;;mathematical model;;electrohydrodynamics(EHD);;field intensity;;heat transfer capability
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:西安交通大学热流科学与工程教育部重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金重点项目(No.51536007);国家自然科学基金面上项目(No.51676155)
  • 语种:中文;
  • 页:GCRB201905022
  • 页数:6
  • CN:05
  • ISSN:11-2091/O4
  • 分类号:162-167
摘要
毛细极限常常制约了传统微型平板热管对高热流密度电子器件的冷却。本文采用结构简单、能耗低的电流体力学强化技术与微槽平板热管相结合,建立了一维电流体微槽平板热管稳态轴向流动传热的数学模型,研究了在不同电场强度下工质压力、流速等沿轴向的分布情况.数学分析表明,在本文的研究条件下,当场强为13 kV cm~(-1)时,微型热管的最大传热极限是无电场作用时的11.2倍.微槽平板热管施加电场可加强液体从冷凝段到蒸发段的回流,减少热管对毛细压差的需求,大大提高了热管的传热能力,有助于实现高热流密度电子器件的快速冷却.
        The capillary limit tends to restrict the cooling of high heat flux electronic devices by traditional mini flat heat pipe. Electrohydrodynamics, with simple structure and little energy consumption, is an effective strengthening heat transfer technology. This paper sets up one dimensional axial steady fluid flow and heat transfer mathematical model of mini-groove flat heat pipe based on electrohydrodynamics, aiming at studying the axial distribution of working fluid pressure, velocity,etc. under different electrical field intensities. According to mathematical analysis, the maximum heat transfer limit of mini flat heat pipe under field intensity 13 kV·cm-1 is 11.1 times of that without electrical field intensity under the condition of this paper. Applying electrical field to mini-groove flat heat pipe can enhance the liquid backflow from condensation section to evaporation section, decrease the requirement of capillary pressure difference for heat pipe and obviously improve the heat transfer capability of heat pipe, which can contribute to realizing the rapid cooling of high heat flux electronic devices.
引文
[1] Jiao A J, Ma H B, Critser J K. Evaporation Heat Transfer Characteristics of a Grooved Heat Pipe with Micro-trapezoidal Grooves[J]. International of Journal Heat and Mass Transfer, 2007, 50(6):2905-2911
    [2] Jeong S I, Seyedyagoobi J. Performance Enhancement of a Monogroove Heat Pipe With Electrohydrodynamic Conduction Pumping[C]//ASME 2002 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2002:71-77
    [3] Chubb L W. Improvements Relating to Methods and Apparatus for Heating Liquids:UK Patent[P]. 1961
    [4] Yazdani M, Seyed-Yagoobi J. Electrically Induced Dielectric Liquid Film Flow Based on Electric Conduction Phenomenon[J]. IEEE Transactions on Dielectrics&Electrical Insulation, 2009, 16(3):768-777
    [5] Yu Z, Hallinani K, Bhagat W, et al. Electrohydrodynamically Augmented Micro Heat Pipes[J]. Journal of Thermophysics&Heat Transfer, 2015, 16(2):180-186
    [6] Suman B. A Steady State Model and Maximum Heat Transport Capacity of an Electrohydrodynamically Augmented Micro-grooved Heat Pipe[J]. International Journal of Heat&Mass Transfer, 2006, 49(21/22):3957-3967
    [7] Bryan J E, Seyedyagoobi J. Heat Transport Enhancement of Monogroove Heat Pipe with Electrohydrodynamic Pumping[J]. Journal of Thermophysics&Heat Transfer,2015, 11(3):454-460
    [8] Carey V P. Liquid-vapor Phase-change Phenomena[M].London:Taylor&Francis, 1992
    [9] Gumerov N A. Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field[J]. Chemical Communications, 1999, 46(21):3797-3799
    [10]袁嘉成.电场强化单组分汽液相变传热的热力学机理及其应用[D].广州:华南理工大学,2016YUAN Jiacheng. Theory and Application of Heat Transfer by Liquid-Vapor Phase Change with Electric Field[J].Guang Zhou:South China University of Technology, 2016
    [11] Ma H B, Peterson G P. Experimental Investigation of the Maximum Heat Transport in Triangular Grooves[J]. Journal of Heat Transfer, 1996, 118(8):740-745

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700