用户名: 密码: 验证码:
应用振动提高搅拌摩擦加工效率(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of vibration to enhance efficiency of friction stir processing
  • 作者:M.ABBASI ; M.GIVI ; B.BAGHERI
  • 英文作者:M.ABBASI;M.GIVI;B.BAGHERI;Faculty of Engineering, University of Kashan;Department of Mining and Metallurgy, Amirkabir University of Technology;
  • 关键词:振动搅拌摩擦加工 ; 搅拌摩擦加工 ; 显微组织 ; 力学性能
  • 英文关键词:friction stir vibration processing;;friction stir processing;;microstructure;;mechanical properties
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:Faculty of Engineering, University of Kashan;Department of Mining and Metallurgy, Amirkabir University of Technology;
  • 出版日期:2019-07-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 语种:英文;
  • 页:ZYSY201907005
  • 页数:8
  • CN:07
  • ISSN:43-1239/TG
  • 分类号:44-51
摘要
搅拌摩擦加工(FSP)是一种处理金属表面的固态改性方法。在此过程中,由于非自耗刀具的旋转和来回移动,使金属表面组织细化、力学性能提升。提高FSP效率的方法较多,本研究中采用的是一种叫振动搅拌摩擦加工(FSVP)的新方法。在此方法中,金属工件在FSP过程中与加工线垂直振动。分析比较FSP法和FSVP法加工的Al5052合金试样的显微组织和力学性能,包括硬度、极限抗拉强度(UTS)和伸长率。结果表明,采用FSVP后,振动可使材料的晶粒尺寸减小约33%,极限抗拉强度和硬度提高约7%。这与振动作用下金属表面材料的应变增强有关。应变增加导致位错密度增加,动态再结晶使大角度晶界进一步发育。结果还表明,FSV加工试样的极限抗拉强度和伸长率均随振动频率的增加而增加。
        Friction stir processing(FSP) is a solid-state modification method to process the surface of metals. In this process, due to rotation and traverse motions of a non-consumable tool, metal surface microstructure is refined and its mechanical characteristics are improved. Different methods have been applied to improving the efficiency of FSP. In this research, a new method entitled friction stir vibration processing(FSVP) was presented to enhance the efficiency of FSP. In this method, metal workpiece was vibrated normal to processing line during FSP. Microstructure and mechanical properties including hardness, ultimate tensile strength(UTS) and elongation of Al5052 alloy specimens processed using FSP and FSVP methods were analyzed and compared. The results showed that grain size decreased by about 33% as vibration was applied. It was also observed that ultimate tensile strength as well as hardness increased by about 7% as FSVP was applied. This was related to the enhanced straining of metal surface material as vibration was applied. The increase in straining results in the increase of dislocation density. It leads to more development of high angle grain boundaries due to dynamic recrystallization. The results also showed that UTS and elongation of FSV processed specimens increased as vibration frequency increased.
引文
[1] MA Z Y. Friction stir processing technology:A review[J].Metallurgical and Materials Transactions A, 2008, 39:642-658.
    [2] GAN W Y, ZHOU Z, ZHANG H, PENG T. Evolution of microstructure and hardness of aluminum after friction stir processing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 24:975-981.
    [3] GHOLAMI S, EMADODDIN E, TAJALLY M, BORHANI E.Friction stir processing of 7075 Al alloy and subsequent aging treatment[J]. Transactions of Nonferrous Metals Society of China,2015, 25:2847-2855.
    [4] SUN N, APELIAN D. Friction stir processing of aluminum cast alloys for high performance applications[J]. JOM, 2011, 63(11):44-50.
    [5] LEAL R M, GALVAO I, LOUREIRO A, RODRIGUES D M. Effect of friction stir processing parameters on the microstructural and electrical properties of copper[J]. International Journal of Advanced Manufacturing Technology, 2015, 80:1-9.
    [6] XUE P, XIAO B L, MA Z Y. High tensile ductility via enhanced strain hardening in ultrafine-grained Cu[J]. Materials Science and Engineering A, 2012, 532:106-110.
    [7] VENKATESWARLU G, DAVIDSON M J, TAGORE G R N.Taguchi optimization of friction stir processing parameters to achieve maximum tensile strength of MG AZ31B alloy[J]. Transactions of the Indian Institute of Metals, 2012, 65:4911-496.
    [8] HANNARD F, CASTIN S, MAIRE E, MOKSO R, PARDOEN T,SIMAR A. Ductilization of aluminum alloy 6056 by friction stir processing[J]. Acta Materialia, 2017, 130:121-136.
    [9] MISHRA R S, MA Z Y, CHARIT I. Friction stir processing:A novel technique for fabrication of surface composite[J]. Materials Science and Engineering A, 2003, 341:307-310.
    [10] BARMOUZ M, ASADI P, BESHARATI GIVI M K,TAHERISHARGH M. Investigation of mechanical properties of Cu/Si C composite fabricated by FSP:Effect of Si C particles’ size and volume fraction[J]. Materials Science and Engineering A, 2011, 528:1740-1749.
    [11] DADAEI M, OMIDVAR H, BAGHERI B, JAHAZI M, ABBASI M.The effect of Si C/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy[J]. International Journal of Materials Research, 2014, 105:369-374.
    [12] GHASEMI-KAHRIZSANGI A, KASHANI BOZORG S F,MOSHREF JAVADI M. Effect of friction stir processing on the tribological performance of steel/Al2O3 nanocomposites[J]. Surface and Coatings Technology, 2015, 276:507-515.
    [13] SHAMSIPUR A, KASHANI BOZORG S F, ZAREI HANZAKI A.Surface modification of titanium by producing Ti/Ti N surface composite layers via FSP[J]. Acta Metallurgical Sinica, 2017, 30:550-557.
    [14] ASTM E3-11. Standard guide for preparation of metallographic specimens[S]. West Conshohocken, PA:ASTM International, 2011.
    [15] ASTM-E112-13. Standard test methods for determining average grain size[S]. West Conshohocken, PA:ASTM International, 2013.
    [16] ASTM-E8. Standard test methods of tension testing of metallic materials[S]. West Conshohocken, Pa:ASTM International, 2016.
    [17] SHARMA C, UPADHYAY V, DWIVEDI D K, KUMAR P.Mechanical properties of friction stir welded armor grade Al-Zn-Mg alloy joints[J]. Transactions of Nonferrous Metals Society of China,2017, 27:493-506.
    [18] ASTM E384-11. Standard test method for Knoop and Vickers hardness of materials[S]. West Conshohocken, PA:ASTM International, 2011.
    [19] CHOI D H, KIN Y H, AHN B W, KIM Y I, JUNG S B.Microstructure and mechanical property of A356 based composite by friction stir processing[J]. Transactions of Nonferrous Metals Society of China, 2013, 23:335-340.
    [20] ABBASI M, BAGHERI B, DADAEI M, OMIDVAR H, REZAEI M.The effect of FSP on mechanical, tribological and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface[J].The International Journal of Advanced Manufacturing Technology,2015, 77:2051-2058.
    [21] MISHRA R S, MA Z Y. Friction stir welding and processing[J].Materials Science and Engineering R, 2005, 50:1-78.
    [22] KAIBYSHEV R, SHIPILOVA K, MUSIN F, MOTOHASHI Y.Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion[J]. Materials Science and Engineering A, 2005, 396:341-351.
    [23] FOULADI S, GHASEMI A H, ABBASI M, ABEDINI M,KHORASANI A M, GIBSON I. The effect of vibration during friction stir welding on corrosion behavior, mechanical properties and machining characteristics of stir zone[J]. Metals, 2017, 7(10):421-433.
    [24] BAROONI O, ABBASI M, GIVI M, BAGHERI B. New method to improve the microstructure and mechanical properties of joint obtained using FSW[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9-12):4371-4378.
    [25] HULL D, BACON D J. Introduction to dislocations[M]. 5th ed.USA:Elsevier, 2011.
    [26] FOULADI S, ABBASI M. The effect of friction stir vibration welding process on characteristics of Si O2 incorporated joint[J].Journal of Materials Processing Technology, 2017, 243:23-30.
    [27] CALLISTER W D. Materials science and engineering:An introduction[M]. USA:Wiley, 2007.
    [28] DIETER G E. Mechanical metallurgy[M]. Singapore:Mc Graw-Hill Book Company, 1988.
    [29] SCHEMPP P, CROSS C E, HACKER R, PITTNER A,RETHMEIER M. Influence of grain size on mechanical properties of aluminum GTA weld metal[J]. Weld World, 2013, 57:293-304.
    [30] HANSEN N. The effect of grain size and strain on the tensile flow stress of aluminum at room temperature[J]. Acta Metallurgica, 1977,25:863-869.
    [31] SPITTLE J A, CUSHWAY A A. Influence of superheat and grain structure on hot-tearing susceptibilities of Al-Cu alloy castings[J].Metals Technology, 1983, 10:6-13.
    [32] ESTRIN Y Z, ZABRODIN P A, BRAUDE I S, GRIGOROVA T V,IASEV N V, PUSTOVALOV V V, FOMENKO V S, SHUMILIN S E.Low temperature plastic deformation of AZ31 magnesium alloy with different microstructures[J]. Low Temperature Physics, 2010, 36:1100-1112.
    [33] ZHANG W W, CONG S. Failure analysis of SUS304 sheet during hydro-bulging based on GTN ductile damage model[J]. The International Journal of Advanced Manufacturing Technology, 2016,86:427-435.
    [34] UTHAISANGSUK V. Microstructure based formability modeling of multiphase steels[D]. Aachen:RWTH Achen University, 2009.
    [35] ABBASI M, SHAFAAT M A, KETABCHI M, HAGHSHENAS D,ABBASI M. Application of the GTN model to predict the forming limit diagram of IF-steel[J]. Journal of Mechanical Science and Technology, 2012, 26:345-352.
    [36] AZIZIEH M, BAHADORI R, ABBASI M, YOON E Y, KIM H S.Effect of friction stir processing on the microstructure of pure magnesium castings[J]. International Journal of Cast Metals Research, 2015, 28:345-351.
    [37] GHANBARI D, KASIRI ASGARANI M, AMINI K, GHARAVI F.Influence of heat treatment on mechanical properties and microstructure of the Al2024/Si C composite produced by multi-pass friction processing[J]. Measurement, 2017, 104:151-158.
    [38] JAFARI M, ABBASI M, POURSINA D, GHEYSARIAN A,BAGHERI B. Microstructure and mechanical properties of friction stir welded dissimilar steel-copper joints[J]. Journal of Mechanical Science and Technology, 2017, 31:1135-1142.
    [39] RAHMI M, ABBASI M. Friction stir vibration welding process:Modified version of friction stir welding process[J]. The International Journal of Advanced Manufacturing Technology, 2017,90:141-151.
    [40] GHEYSARIAN A, ABBASI M. The effect of aging on microstructure, formability and springback of Ti-6Al-4V titanium alloy[J]. Journal of Materials Engineering and Performance, 2017,26:374-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700