用户名: 密码: 验证码:
有机-无机联合矿井突水水源判别方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Method of determining mine water inrush source based on combination of organic-inorganic water chemistry
  • 作者:杨建 ; 刘基 ; 靳德武 ; 王强民
  • 英文作者:YANG Jian;LIU Ji;JIN Dewu;WANG Qiangmin;CCTEG Xi'an Research Institute;Shaanxi Key Laboratory of Preventing and Controlling Coal Mine Water Hazard;China Coal Research Institute;
  • 关键词:有机-无机联合 ; 水源判别 ; 水化学分带 ; 矿化度 ; 荧光指纹技术
  • 英文关键词:combination of Organic-inorganic;;water sources determination;;hydrochemical zoning;;TDS;;fluo-rescence fingerprint technology
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中煤科工集团西安研究院有限公司;陕西省煤矿水害防治技术重点实验室;煤炭科学研究总院;
  • 出版日期:2018-10-15
  • 出版单位:煤炭学报
  • 年:2018
  • 期:v.43;No.289
  • 基金:国家重点研发计划资助项目(2016YFC0501104);; 煤炭开采水资源保护与利用国家重点实验室开放基金资助项目(SHJT-16-30.10);; 中煤科工集团西安研究院有限公司创新基金面上基金资助项目(2018XAYMS03)
  • 语种:中文;
  • 页:MTXB201810028
  • 页数:9
  • CN:10
  • ISSN:11-2190/TD
  • 分类号:230-238
摘要
溶解性有机质(Dissolved Organic Matter,DOM)在随地下水运移过程中,不同含水层水中DOM含量、类别、荧光强度等均存在较明显差异,因此结合无机水化学,开展了有机-无机联合的矿井突水水源判别方法研究,结果表明:地下水中无机组分浓度分布具有垂向分带性,利用pH、矿化度(TDS),HCO3,SO4等无机指标,可以判别浅部含水层和深部含水层水化学特征差异; DOM进入含水层后发生氧化还原反应强烈,其浓度(TOC含量和UV254)变化快、差异大,可以识别地表水与第四系水的水化学特征;第四系与白垩系含水层,以及覆岩破坏范围内的细分含水层,水中无机组分和有机组分含量非常接近,而荧光指纹技术灵敏度高,可以根据3DEEM光谱图分析DOM类型和荧光峰强度等差异,区分相邻含水层的水化学特征差异。陷落柱等地质异常体作为特殊的地质环境体,其内部水体中DOM相对丰富,其DOM含量和荧光指纹特征与奥灰水差异显著。将有机-无机联合开展不同含水层水化学特征分析,能够很好地区分不同水源,为矿井突水事故发生时快速判别水源提供科学依据。
        Dissolved organic matter( DOM) had different migration and transformation characteristics with inor-ganic components in the process of groundwater movement,and there were obvious differences in the concentration,type and fluorescence intensity at different aquifers.Therefore,the authors studied the determination method of mine water inrush sources with the combination of organic-inorganic water chemistry.The result showed that the distribution of inorganic matter concentration in groundwater had vertical zoning,which could distinguish the difference of hydrochemical characteristics between shallow aquifers and deep aquifers.Based on the hydrogeo-logic condition and the law of hydro-geochemical occurrence in the study area,the hydro-chemical anomaly samples could be distinguished using pH,mineralizing degree( TDS),HCO_3,SO_4 and other inorganic indexes,which could provide a scientific basis for the establish-ment of water chemical characteristics standard in different aquifers. DOM had a strong oxidation-reduction reaction and its concentration( i.e.TOC and UV254) changed rapidly after entering the aquifer,which could be used to distinguish the hydrochemical characteristics of the shallow aquifers,such as the Quaternary and Cretaceous aquifers. The concentrations of the inorganic and organic components in the aquifers were very similar,but the fluorescence fingerprint had high sensitivity in the destruct height of overlying strata. The water source of each aquifer could be determined by the analysis of the difference of DOM type and fluorescence peak intensity according to 3DEEM spectrogram.The geological anomaly bodies such as the collapse column were special geological environment bodies,in which DOM was relatively rich. By analyzing the DOM concentration and the characteristics of the fluorescence fingerprint,the difference of the hydrochemical characteristics with the Ordovician limestone aquifer could be distinguished well.Inorganic components had vertical zoning and could discriminate hydrochemical anomalies. The water sources of different aquifers could be determined by the analysis of chemical characteristics of organic and inorganic components,which could provide a scientific basis for quickly determining water sources when mine water inrush accidents occur.
引文
[1] ADAMS S,TITUS R,PIETERSEN K,et al.Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo,Southafrica[J].Journal of Hydrology,2001(24):91-93.
    [2]马雷,钱家忠,赵卫东.基于GIS的地下水化学类型空间分区方法[J].煤炭学报,2012,37(3):490-494.MA Lei,QIAN Jiazhong,ZHAO Weidong.GIS-based approaches for spatially dividing groundwater chemical types[J]. Journal of China Coal Society,2012,37(3):490-494.
    [3] WU Q,WANG M Y.Characterization of water bursting and discharge into underground mines with multilayered groundwater flow systems in the North China coal basin[J]. Hydrogeology Journal,2006,14(6):882-893.
    [4]陈陆望,许冬清,殷晓曦,等.华北隐伏型煤矿区地下水化学及其控制因素分析——以宿县矿区主要突水含水层为例[J].煤炭学报,2017,42(4):996-1004.CHEN Luwang,XU Dongqing,YIN Xiaoxi,et al. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China:A case study of dominant inrush aquifers in Suxian mining area[J]. Journal of China Coal Society,2017,42(4):996-1004.
    [5]黄平华,陈建生.基于多元统计分析的矿井突水水源Fisher识别及混合模型[J].煤炭学报,2011,36(S1):131-136.HUANG Pinghua,CHEN Jiansheng. Fisher indentify and mixing model based on multivariate statistical analysis of mine water inrush sources[J].Journal of China Coal Society,2011,36(S1):131-136.
    [6]王心义,赵伟,刘小满,等.基于熵权-模糊可变集理论的煤矿井突水水源识别[J].煤炭学报,2017,42(9):2433-2439.WANG Xinyi,ZHAO Wei,LIU Xiaoman,et al.Identification of water inrush source from coalfield based on entropy weight-fuzzy variableset theory[J]. Journal of China Coal Society,2017,42(9):2433-2439.
    [7] WU Qiang,FAN Shukai,ZHOU Wanfang,et al. Application of the analytic hierarchy process to assessment of water inrush:A case study for the No. 17 coal seam in the Sanhejian Coal Mine China[J].Mine Water and the Environment,2013,32(3):229-238.
    [8]章光新,邓伟,何岩,等.中国东北松嫩平原地下水水化学特征与演变规律[J].水科学进展,2006,17(1):20-28.ZHANG Guangxin,DENG Wei,HE Yan,et al. Hydrochemical characteristics and evolution laws of groundwater in Songnen Plain,Northeast China[J].Advances in Water Science,2006,17(1):20-28.
    [9]荆秀艳.银川平原地下水质形成及饮水安全评价[D].西安:西安科技大学,2012.JING Xiuyan.Formation of underground water quality and evaluation of drinking water safety in Yinchuan plain[D]. Xi’an:Xi’an University of Science and Technology,2012.
    [10] ROSTAD C E,MARTIN B S,BARBER L B,et al.Effect of a constructed wetland on disinfection by-products,Removal processes and Production of precursors[J].Environmental Science and Technology,2000,34:2703-2710.
    [11]沈照理,王焰新,郭华明.水-岩相互作用研究的机遇与挑战[J].地球科学,2012,37(2):207-219.SHEN Zhaoli,WANG Yanxin,GUO Huaming. Opportunities and challenges of water-rock interaction studies[J]. Earth Science-Journal of China University of Geosciences,2012,37(2):207-219.
    [12]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.
    [13] GROFFMAN A R,CROSSEY L J. Transient redox regimes in a shallow alluvial aquifer[J]. Chemical Geology,1999,161(4):415-442.
    [14] KEDZIOREK M A M,BOURG A C M.Electron trapping capacity of dissolved oxygen and nitrate to evaluate Mn and Fe reductive dissolution in alluvial aquifers during riverbank filtration[J]. Journal of hydrology,2009,365:74-78.
    [15] BOURG A C M,KEDZIOREK M A M,DARMENDRAIL D.Organic matter as the driving force in the solubilisation of Fe and Mn during river water infiltration[A]. RAY C. Understanding Contaminant Biogeochemistry and Patheogen removal[C]. Kluwer:Dordrecht,The Neterlands,2002:43-54.
    [16] JORGENSEN B B,PARKES R J. Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments(Limfjorden,Denmark)[J]. The American Society of Limnology and Oceanography,2010,55(3):1338-1352.
    [17]贺勤,刘正奇.毛乌素沙漠——世界沙漠暴雨中心[J].内蒙古气象,1996(3):5-15.HE Qin,LIU Zhengqi. The Maowusu Desert-the world’s Desert storm center[J].Meteorology Journal of Inner Mongolia,1996(3):5-15.
    [18] COBLE P G,GREEN S A,BLOUGH N V,et al. Characterization of dissolved organic matter in the Black sea by fluorescence spectroscopy[J].Nature,1990,348(6300):432-435.
    [19]杨建,成徐州,常江,等.再生水地下回灌对溶解性有机物去除的三维荧光光谱分析[J].清华大学学报,2010,50(9):1421-1424.YANG Jian,CHENG Xuzhou,CHANG Jiang,et al. Changes in DOM during groundwater recharging with reclaimed water using3DEEM[J].Journal of Tsinghua University,2010,50(9):1421-1424.
    [20]杨建,高金华,常江.MIEX中试实验对二级出水中有机物去除的3DEEM解析[J].环境科学,2012,33(6):102-107.YANG Jian,GAO Jinhua,CHANG Jiang. Characterization of the change in DOM during municipal secondary effluent treatment with magnetic ion exchange resin by 3DEEM[J]. Environmental Science,2012,33(6):102-107.
    [21] LEENHEER J A,CROUE J P.Characterizing aquatic dissolved organic matter[J]. Environmental Science and Technology,2003,37(1):18A-26A.
    [22] MOSTOFA K M G,YOSHIOKA T,KONOHIRA E,et al.Dynamics and characteristics of fluorescent dissolved organic matter in the groundwater,river and lake water[J]. Water Air Soil Pollut,2007,184:157-176
    [23] MOSTOFA K M G,WU F,LIU C Q,et al.Characterization of naming river(southwestern China)sewerage-impacted pollution using an excitation-emission matrix and PARAFAC[J].Limnology,2010,11:217-231.
    [24]杨建,靳德武.井上下联合处理工艺处理矿井水过程中溶解性有机质变化特征[J].煤炭学报,2015,40(2):439-444.YANG Jian,JIN Dewu.Variation characteristics of dissolved organic matter in underground mine water with combined water treatment process at surface and underground mine[J]. Journal of China Coal Society,2015,40(2):439-444.
    [25]邹友平,吕闰生,杨建.云盖山矿井水中溶解有机质三维荧光光谱特征分析[J].煤炭学报,2012,37(8):1396-1400.ZOU Youping,LRunsheng,YANG Jian.Three-dimensional excitation emission matric fluorescence spectroscopic characterization of dissolved organic matter in coal mine water[J].Journal of China Coal Society,2012,37(8):1396-1400.
    [26] CHEN W,WESTERHOFF P,LEENHEER J A,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science and Technology,2003,37(24):5701-5710.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700