用户名: 密码: 验证码:
超低频声压水听器的设计仿真与测试
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design, Simulation and Test of Ultra-Low Frequency Sound Pressure Hydrophone
  • 作者:于砚廷 ; 苏伟 ; 王振 ; 张超 ; 郑轶
  • 英文作者:YU Yan-ting;SU Wei;WANG Zhen;ZHANG Chao;ZHENG Yi;Qilu University of Technology (Shandong Academy of Sciences);Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology;National Engineering and Technological Research Center of Marine Monitoring Equipment;Joint China-Ukrainian Scientific & Innovation Laboratory for Hydroacoustics;
  • 关键词:超低频声压水听器 ; 有限元法 ; 谐振频率 ; 声压灵敏度
  • 英文关键词:ultra-low frequency sound pressure hydrophone;;finite element method;;resonant frequency;;sound pressure sensitivity
  • 中文刊名:HAGC
  • 英文刊名:Coastal Engineering
  • 机构:齐鲁工业大学(山东省科学院);山东省海洋环境监测技术重点实验室;国家海洋监测设备工程技术研究中心;中乌共建海洋声学科研创新联合实验室;
  • 出版日期:2019-06-15
  • 出版单位:海岸工程
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金青年基金项目——水下目标前向声散射探测的多普勒域直达波抑制机制研究(61801275);; 山东省重大科技创新工程项目——超低频同振式矢量水听器及其测试保障系统研究(2018YFJH0707);; 水声技术重点实验室稳定支持课题——浅海甚低频声强矢量抵达结构特征研究(SSJSWDZC2018014);; 山东省重点研发计划(科技合作)项目——水声系统模拟设备软件的联合研发(2018JHZ002)
  • 语种:中文;
  • 页:HAGC201902002
  • 页数:9
  • CN:02
  • ISSN:37-1144/U
  • 分类号:16-24
摘要
随着减振降噪及消声技术的发展,水声探测技术逐渐向低频段延伸。相应地,对适用于超低频频段且具有高灵敏度的水听器需求也越来越迫切。该研究基于有限元理论,对4种形式的声压水听器进行了灵敏度对比分析,构建了超低频、高灵敏度声压水听器的系统模型;通过仿真,得到了其前二阶模态,空气及水中的导纳曲线,以及声压接收灵敏度,仿真结果表明,超低频频段内,该研究设计的声压水听器在空气及水中的频响曲线平坦。基于仿真结果进行了样机制作,对所研制的实物样机进行了实验测试,测试结果表明该种声压水听器具有良好的超低频响应特性以及较高的灵敏度。通过对实物样机的测试,验证了其实用性。
        With the development of vibration reduction, noise reduction and noise elimination techniques, the underwater acoustic detection technology tends to extend toward low frequency range gradually. Accordingly, the demand for hydrophones which are suitable for ultra-low frequency band and has high sensitivity becomes more and more urgent. Based on finite element theory, the sensitivity of four types of sound pressure hydrophones is analyzed and compared, and the system model of sound pressure hydrophone with ultra-low frequency and high sensitivity is constructed. By simulation, the modes of first and second order, the admittance curves in air and water and the sound pressure receiving sensitivity are obtained. The results from the simulation show that within the ultra-low frequency band, the sound pressure hydrophone we designed has even frequency response curves in air and water. Based on the simulation, a prototype of sound pressure hydrophone is developed and tested experimentally. The test results indicate that the prototype of sound pressure hydrophone has good ultra-low frequency response character and high receiving sensitivity, which has verified the practicability of the prototype.
引文
[1] ZHU Y Q,YANG H,HU S C.Communication experiment system design based on acoustic wave[J].Equipment Manufacturing Technology,2017(3):264-266.朱玉琼,杨红,胡爽策.基于声波的通信实验系统设计[J].装备制造技术,2017(3):264-266.
    [2] CHEN H,ZHENG Y J,HU H P,et al.Analysis on performance of an infrasound piezoelectric hydrophone[C]//IEEE.2016 Symposium on Piezoelectricity Acoustic Waves and Device Applications (SPAWDA).Xi'an:Xi'an University of Technology,2016:309-313.
    [3] HUI C,JIANG H L,HUA Z L.Offshore marine ambient noise measurement based on hydrophone[C]//International Conference on Advances in Mechanical Engineering and Industrial Informatics.France:Atlantis Press,2015:1558-1561.
    [4] HAN J,ZHANG X G,MENG C X,et al.Simulated Research on Passive Sonar Range Using Different Hydrographic Conditions[C]// EDP Sciences.In Proceedings of the MATEC Web of Conferences.Lisbon:EDP Sciences,2015:04003.
    [5] CHEN Z ,LI Z Z,GAO X,et al.Simulation of sonar target tracking and locating based on pressure hydrophone in ocean[J].Computer Simulation,2017,34(5):1-6.陈喆,李智忠,高鑫,等.海洋中声压水听器对声纳目标跟踪定位仿真[J].计算机仿真,2017,34(5):1-6.
    [6] TENG D,YANG H,LI D J.Foundation of underwater acoustic transducer[M].Xi’an:Northwestern Polytechnical University Press,2016:1-18.滕舵,杨虎,李道江.水声换能器基础[M].西安:西北工业大学出版社,2016:1-18.
    [7] GAO F.Development prospect on the vibration isolation and noise reduction technology of submarine in European countries[J].Ship Science & Technology,2015,37(10):160-164.高峰.欧洲国家海军潜艇减振降噪技术发展展望[J].舰船科学技术,2015,37(10):160-164.
    [8] WANG H G.Study of vibration isolation and noise reduction technology in US nuclear submarine propulsion system[J].Ship Science and Technology,2013,35(7):149-153.王汉刚.美国核潜艇推进系统减振降噪技术发展分析[J].舰船科学技术,2013,35(7):149-153.
    [9] LU W.Finite element analysis for new bender disk transducer[D].Harbin:Harbin Engineering University,2006.芦苇.新型弯曲圆盘换能器的有限元设计[D].哈尔滨:哈尔滨工程大学,2006.
    [10] COATES R.Underwater acoustic communication[C]//IEEE.Proceedings of OCEANS '93(3).Canada:IEEE,1993:420-425.
    [11] LI S P,MO X P,ZHANG Y Q,et al.A high sensitivity hydrophone with composite fluid cavity[J].Journal of Applied Acoustics,2017,36(1):54-58.李世平,莫喜平,张运强,等.复合液腔高灵敏度水听器[J].应用声学,2017,36(1):54-58.
    [12] LI Z Q.Research on high sensitivity hydrophone[D].Harbin:Harbin Engineering University,2010.李中强.高灵敏度声压水听器研究[D].哈尔滨:哈尔滨工程大学,2010.
    [13] LI F.Research on low frequency hydrophone based on PVDF[D].Kunming:Kunming University of Science and Technology,2013.李飞.基于PVDF的低频水听器研究[D].昆明:昆明理工大学,2013.
    [14] VARADAN V V,CHIN L C,VARADAN V K.Finite-element modeling of flextensional electroacoustic transducers[J].Smart Materials & Structures,1993,2(4):201.
    [15] BEJARANO F,LUCAS M.Finite element modeling and design of cymbal transducers for power ultrasonics applications[C]//IEEE.2011 IEEE International Ultrasonics Symposium,Orlando,FL,USA:IEEE,2011:1567-1570.
    [16] YOUN S K,BECKER E B.A finite element method for the analysis of piezoelectric composite hydrophones[J].Computers & Structures,1992,44(6):1215-1223.
    [17] MA Y C,LI D H,WANG L N.Analysis of cymbal piezocomposite transducer's effective piezoelectric coefficients based on ANSYS[J].Chinese Journal of Scientific Instrument,2006,27(6):1313-1315.
    [18] TREMPER T,CARAZO A V,UCHINO K.Finite element analysis simulations of apiezoelectric cymbal actuator using Atila software[J].The Journal of the Acoustical Society of America,2008,123(5):3115.
    [19] TRESSLER J F,CAO W,UCHINO K,et al.Finite element analysis of the cymbal-type flextensional transducer[J].Ultrasonics Ferroelectrics & Frequency Control IEEE Transactions on,1998,45(5):1363-1369.
    [20] UZGUR E,DOGAN A,NEWNHAM R E.Design optimization of piezoelectric composite transducer using finite element method[J].Key Engineering Materials,2001,206-213(2):1297-1300.
    [21] MO X P.Simulation and analysis of acoustics transducers using the ANSYS software[J].Technical Acoustics,2007,26(6):1281-1290.莫喜平.ANSYS软件在模拟分析声学换能器中的应用[J].声学技术,2007,26(6):1281-1290.
    [22] YU Y,ZHANG S,LI H,et al.Modal and harmonic response analysis of key components of ditch device based on ANSYS[J].Procedia Engineering,2017,174:956-964.
    [23] SIGRIST J F.Modal analysis of fluid-structure interaction problems with pressure-based fluid finite elements for industrial applications[J].The International Journal of Multiphysics,2007,1(1):123-149.
    [24] WANG R J.Underwater acoustic material handbook[M].Beijing:Science Press,1983:144-146.王荣津.水声材料手册[M].北京:科学出版社,1983:144-146.
    [25] MO X P.Research and design of new bending transducer[D].Harbin:Harbin Engineering University,1998.莫喜平.新型弯张换能器的研究与设计[D].哈尔滨:哈尔滨工程大学,1998.
    [26] LIU Y P.Design of flexural transducer by finite element method[D].Harbin:Harbin Engineering University,2003.刘永平.有限元法设计弯张换能器[D].哈尔滨:哈尔滨工程大学,2003.
    [27] 全国声学标准化技术委员会.声学-水听器低频校准方法:GB/T 4130-2017[S].北京:中国标准出版社,2017.National Technical Committee 17 on Acoustics of Standardization Administration of China.Acoustics—Low frequency calibration methods of hydrophones:GB/T 4130-2017[S].Beijing:Standards Press of China,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700