用户名: 密码: 验证码:
一株好氧反硝化菌的同步脱氮降解苯胺特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simultaneous aniline degradation and aerobic denitrification characteristics of an aerobic denitrifier
  • 作者:赵芝清 ; 黄乐 ; 邱唯一 ; 沈舒雯 ; 熊萍
  • 英文作者:Zhao Zhiqing;Huang Le;Qiu Weiyi;Shen Shuwen;Xiong Ping;College of Chemical & Material Engineering,Quzhou University;College of Environment & Resource Sciences,Zhejiang University;School of Environmental Science and Engineering,Zhejiang Gongshang University;
  • 关键词:Acinetobacter ; sp. ; H3 ; 好氧反硝化 ; 苯胺降解
  • 英文关键词:Acinetobacter sp.H3;;aerobic denitrification;;aniline degradation
  • 中文刊名:GYSC
  • 英文刊名:Industrial Water Treatment
  • 机构:衢州学院化学与材料工程学院;浙江大学环境与资源学院;浙江工商大学环境科学与工程学院;
  • 出版日期:2019-07-20
  • 出版单位:工业水处理
  • 年:2019
  • 期:v.39;No.341
  • 基金:国家自然科学基金项目(21607092);; 衢州市科技局资助项目(2015Y012);; 衢州学院中青年学术骨干项目(XNZQN201506);衢州学院博士科研启动项目(BSJX201601);; 省级大学生科技创新活动计划暨新苗人才计划(2017R429003)
  • 语种:中文;
  • 页:GYSC201907006
  • 页数:5
  • CN:07
  • ISSN:12-1087/X
  • 分类号:22-26
摘要
采用批式实验探究了碳源、抗生素、重金属对好氧反硝化苯胺降解菌株同步脱氮降解苯胺特性的影响。结果表明:经生理生化反应和16S r DNA测序,鉴定为不动杆菌属(命名为Acinetobacter sp.H3)。在30℃、90 r/min振荡培养条件下,异养硝化率、TN去除率、苯胺降解率最大分别达57.98%、54.24%、100%。在35μg/L抗生素和80 mg/L重金属胁迫下,苯胺仍能完全转化降解,好氧反硝化则受到了不同程度的抑制。
        Batch experiments were conducted to investigate the effects of carbon source,antibiotics and heavy metals on the characteristics of the simultaneous aerobic denitrification and aniline degradation of an aerobic denitrifier. The results showed that it was identified as a member of the genus Acinetobacter(named Acinetobacter sp. H3) by physiological and biochemical reaction and its 16 S rDNA gene sequence analysis. Under the shaking culture conditions of30 °C and 90 r/min,the heterotrophic nitrification rate,TN removal rate and aniline degradation rate reached 57.98%,54.24% and 100%,respectively. Under the stress of 35 μg/L antibiotics and 80 mg/L heavy metals,aniline could still be completely transformed and degraded,and aerobic denitrification was inhibited to varying degrees.
引文
[1] Robertson L A,van Niel E W J,Torremans R A M,et al. Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera pantotropha[J]. Applied and Environmental Microbiology,1988,54(11):2812-2818.
    [2] Wang Pan,Yuan Yongze,Li Qian,et al. Isolation and immobilization of new aerobic denitrifying bacteria[J]. International Biodeterioration&Biodegradation,2013,76:12-17.
    [3] Zhang Qingling,Liu Ying,Ai Guoming,et al. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium,Bacillus methylotrophicus strain L7[J]. Bioresource Technology,2012,108:35-44.
    [4]郭端强,刘海龙,万亚涛,等. 1株好氧反硝化细菌的分离鉴定及反硝化特性研究[J].生物技术通报,2012(10):205-209.
    [5]周石磊,黄廷林,白士远,等.贫营养好氧反硝化菌的分离鉴定及其脱氮特性[J].中国环境科学,2016,36(1):238-248.
    [6]魏浩,吕红,周集体,等. Pseudomonas sp. HS-2降解双酚F及脱氮的特性研究[J].工业水处理,2018,38(1):52-56.
    [7] Miyahara M,Kim S W,Fushinobu S,et al. Potential of Aerobic Denitrification by Pseudomonas stutzeri TR2 To Reduce Nitrous Oxide Emissions from Wastewater Treatment Plants[J]. Applied and Environmental Microbiology,2010,76(14):4619-4625.
    [8] Kuznetsov S I,Dubinina G A,Lapteva N A. Biology of oligotrophic bacteria[J]. Annual Review of Microbiology,1979,33(1):377-387.
    [9] Su Junfeng,Zhang Kai,Huang Tinglin,et al. Heterotrophic nitrification and aerobic denitrification at low nutrient conditions by a newly isolated bacterium,Acinetobacter sp. SYF26[J]. Microbiology,2015,161(4):829-837.
    [10] Zhang Shumei,Sha Changqing,Jiang Wei,et al. Ammonium removal at low temperature by a newly isolated heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas fluorescens wsw-1001[J]. Environmental Technology,2015,36(19):1-21.
    [11] He Da,Zheng Maosheng,Ma Tao,et al. Interaction of Cr(Ⅵ)reduction and denitrification by strain Pseudomonas aeruginosa PCN-2under aerobic conditions[J]. Bioresource Technology,2015,185:346-352.
    [12] Ge Qilong,Yue Xiuping,Wang Guoying,et al. Simultaneous heterotrophic nitrification and aerobic denitrification at high initial phenol concentration by isolated bacterium Diaphorobacter sp. PD-7[J].Chinese Journal of Chemical Engineering,2015,23(5):835-841.
    [13] Lyons C D,Katz S,Bartha R. Mechanisms and pathways of aniline elimination from aquatic environments[J]. Applied and Environmental Microbiology,1984,48(3):491-496.
    [14]赵晶,刘玉香,呼婷婷,等.复合菌同时去除苯胺与氨氮及其影响因素研究[J].环境科学与技术,2017,40(3):133-137.
    [15]刘勇波.适冷苯胺降解菌Pseudomonas migulae AN-1的好氧反硝化及生物循环井修复硝酸盐污染地下水研究[D].长春:吉林大学,2015.
    [16]黄廷林,周娜,张海涵,等. 3株贫营养好氧反硝化细菌的分离鉴定及反硝化特性[J].环境工程学报,2014,8(12):5507-5513.
    [17]东秀珠.常见细菌系统鉴定手册[M].北京:科学出版社,2001:353-410.
    [18] Stanley J,Baquar N,Burnens A. Molecular subtyping scheme for Salmonella panama[J]. Journal of Clinical Microbiology,1995,33(5):1206.
    [19]国家环保总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社,2002:254-279.
    [20] Obaja D. Biological nutrient removal by a sequencing batch reactor(SBR)using an internal organic carbon source in digested piggery wastewater[J]. Bioresource Technology,2005,96(1):7-14.
    [21]宋宇杰.异养硝化—好氧反硝化菌Acinetobacter sp. Y1的筛选和脱氮性能研究[D].南京:南京农业大学,2013.
    [22] Huang C H,Renew J E,Smeby K L,et al. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis[J]. Journal of Contemporary Water Research and Education,2011,120(1):30-40.
    [23]常庆波.抗生素对序批式生物膜反应器处理海水养殖废水性能的影响[D].青岛:中国海洋大学,2015.
    [24]王瑶,刘玉香,安华,等.金属离子对粪产碱杆菌C16的脱氮和亚硝酸盐积累的影响[J].微生物学通报,2014,41(11):2254-2263.
    [25]张敏.三种抗生素对淡水池塘底泥硝化作用及氨氧化微生物生长和群落结构的影响[D].武汉:华中农业大学,2014.
    [26]王文超.重金属冲击对异养硝化-好氧反硝化菌脱氮性能的影响研究[D].成都:西南交通大学,2013.
    [27]李志伟. Zn(Ⅱ)和Ni(Ⅱ)协同作用对序批式生物反应器性能的影响[D].青岛:中国海洋大学,2015.
    [28]章强,辛琦,朱静敏,等.中国主要水域抗生素污染现状及其生态环境效应研究进展[J].环境化学,2014,33(7):1075-1083.
    [29]苏恩萍.城市污水厂尾水暴露后双壳类文蛤的生化响应特征研究[D].舟山:中国海洋大学,2014.
    [30] Lin Yan,Kong Hainan,Wu Deyi,et al. Physiological and molecular biological characteristics of heterotrophic ammonia oxidation by Bacillus sp. LY[J]. World Journal of Microbiology&Biotechnology,2010,26(9):1605-1612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700