用户名: 密码: 验证码:
苦荞MYB家族转录因子研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MYB Transcription Factors in Fagopyrum tataricum
  • 作者:温东 ; 师玉华 ; 赵锐 ; 朱智慧 ; 孙伟 ; 马伟
  • 英文作者:WEN Dong;SHI Yu-hua;ZHAO Rui;ZHU Zhi-hui;SUN Wei;MA Wei;College of Pharmaceutical Sciences,Heilongjiang University of Chinese Medicine;Key Laboratory for Identification and Safe Evaluation of Chinese Medicine,Institute of Chinese Meteria Medica,China Academy of Chinese Medical Sciences;China College of Life Sciences,Huaibei Normal University;
  • 关键词:苦荞 ; MYB转录因子 ; 生物学功能 ; 研究进展
  • 英文关键词:Fagopyrum tataricum;;MYB transcription factors;;biological function;;research progress
  • 中文刊名:ZSFX
  • 英文刊名:Chinese Journal of Experimental Traditional Medical Formulae
  • 机构:黑龙江中医药大学药学院;中国中医科学院中药研究所中药鉴定与安全性评估重点实验室;淮北师范大学生命科学学院;
  • 出版日期:2018-12-05 15:03
  • 出版单位:中国实验方剂学杂志
  • 年:2019
  • 期:v.25
  • 基金:国家自然科学基金项目(81603248);; 中央级公益性科研院所基本科研业务费专项(GH2017-01-01,GH2017-01)
  • 语种:中文;
  • 页:ZSFX201906034
  • 页数:8
  • CN:06
  • ISSN:11-3495/R
  • 分类号:235-242
摘要
苦荞Fagopyrum tataricum被誉为"五谷之王",是集营养、保健于一体的药食同源植物,其富含大量黄酮类化合物芦丁等,氨基酸组成均衡,具有降血糖、降血脂、降血压及抗氧化、抗衰老、抗癌防癌、改善血管微循环等多重功效。转录因子是调控植物基因表达的重要因子,在植物生长发育中发挥着重要的作用。MYB家族转录因子是指含有MYB结构域的一类转录因子,是植物最大的转录因子家族之一,根据其结构不同主要分为1R-MYB,R2R3-MYB,3R-MYB,4R-MYB四个家族,在植物生长发育与类黄酮次生代谢调控中发挥着重要的作用。该研究对苦荞中已报道的MYB家族转录因子进行总结和系统聚类分析,梳理了他们所属的亚家族以及相互关系,为进一步挖掘和克隆苦荞MYB家族转录因子提供参考。在此基础上,该文进一步综述了以上MYB家族转录因子在苦荞类黄酮生物合成途径、植物激素以及逆境等非生物胁迫过程中的调控作用,并对苦荞MYB家族转录因子的功能挖掘与调控机制研究进行展望,为苦荞MYB家族转录因子的功能研究和苦荞优质品种选育提供科学参考。
        Known as "the king of the five grains",tartary buckwheat( Fagopyrum tataricum) is a medicinal and edible plant with both nutritional and healthcare functions. It contains rich flavonoids,such as rutin,with balanced amino acid composition and multiple effects,like blood fat-lowering,blood giucose-lowering,blood pressure-lowering, anti-oxidation, anti-aging, anti-cancer, anti-cancer, and microcirculation-improving.Transcription factors play important roles in plant growth and development by regulating gene expressions. MYB family is one of the largest transcription factor families in plant,contains the MYB domain,and can be divided into four subfamilies: 1 R-MYB, R2 R3-MYB,3 R-MYB,4 R-MYB. This family plays various roles in plant growth,plant development and flavonoid biosynthesis of secondary metabolism. In this study,the reported MYB transcription factors in F. tataricum were summarized and systemically clustered,and their interrelationships were defined to provide references for further exploring and cloning MYB transcription factors in F. tataricum. In addition,this study reviewed their regulatory functions of MYB transcription factors in flavonoid biosynthesis pathway,plant hormones pathways and other abiotic stress pathways,and made a conclusion and advances about the future research in F. tataricum. Therefore, this study will provide valuable scientific references for the functional studies of MYB family transcription factors in F. tataricum and its molecular breeding for high-quality varieties.
引文
[1]杨静华.考马斯亮蓝法测定苦荞麦中可溶性蛋白的含量[J].山西医药杂志,2018,47(2):206-207.
    [2] Kim S L,Son Y K,Hwang J J,et al. Development and utilization of buckwheat sprouts as functional vegetables[J]. Fagopyrum,2001,18(2):49-54.
    [3]朱瑞,高南南,陈建民.苦荞麦的化学成分和药理作用[J].中国野生植物资源,2003,22(2):7-9.
    [4]姚佳,靳秔,贾健斌.苦荞黄酮及其生理功能的研究进展[J].食品科技,2014,39(10):194-197.
    [5]马志茹,袁倬斌.芦丁清除活性氧自由基作用的电化学研究[J].分析化学,1997,25(12):1465.
    [6]薛长勇,张月红,刘英华,等.苦荞黄酮降低血糖和血脂的作用途径[J].中国临床康复,2005,9(35):111-113.
    [7]谭玉荣,陶兵兵,关郁芳,等.苦荞类黄酮的研究现状及展望[J].食品工业科技,2012,33(18):377-381.
    [8]孙庄荣.苦荞麦的降血糖作用[J].饮食科学,2001(2):49.
    [9]张以忠,陈庆富.荞麦研究的现状与展望[J].种子,2004,23(3):39-42.
    [10]郎桂常.苦荞麦的营养价值及其开发应用[J].中国粮油学报,1996(3):9-14.
    [11] LIU J,Osbourn A,MA P. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J].Mol Plant,2015,8(5):689-708.
    [12]陈清,汤浩茹,董晓莉,等.植物MYB转录因子的研究进展[J].基因组学与应用生物学,2009,28(2):365-372.
    [13] Paz-Ares J,Ghosal D,Wienand U,et al. The regulatory C1 locus of Zea mays encodes a protein with homology to MYB proto-oncogene products and with structural similarities to transcriptional activators[J]. Embo J,1987,6(12):3553-3558.
    [14] Mehrtens F,Kranz H,Bednarek P,et al. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis[J]. Plant Physiol,2005,138(2):1083-1096.
    [15] Stracke R,Ishihara H,Huep G,et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J,2007,50(4):660-677.
    [16] Ballester A R,Molthoff J,De V R,et al. Biochemical and molecular analysis of pink tomatoes:deregulated expression of the gene encoding transcription factor Sl MYB12 leads to pink tomato fruit color[J]. Plant Physiol,2010,152(1):71-84.
    [17] Bogs J,JafféF W,Takos A M,et al. The grapevine transcription factor Vv MYBPA1 regulates proanthocyanidin synthesis during fruit development[J].Plant Physiol,2007,143(3):1347-1361.
    [18] XU F,NING Y,ZHANG W,et al. An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba[J].Functional,2014,14(1):177-189.
    [19] Nakatsuka T,Saito M,Yamada E,et al. Isolation and characterization of Gt MYBP3 and Gt MYBP4,orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis,in gentian flowers[J]. J Exper Bot,2012,63(18):6505-6517.
    [20] Akagi T,Ikegami A,Tsujimoto T,et al. Dk Myb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit[J]. Plant Physiol,2009,151(4):2028-2045.
    [21] Mellway R D,Tran L T,Prouse M B,et al. The wound-,pathogen-,and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar[J]. Plant Physiol,2009,150(2):924-941.
    [22] SHAN H,CHEN S,JIANG J,et al. Heterologous expression of the chrysanthemum R2R3-MYB transcription factor Cm MYB2 enhances drought and salinity tolerance,increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana[J]. Mol Biotechnol,2012,51(2):160-173.
    [23] ZHANG D,SUN W,SHI Y,et al. Red and blue light promote the accumulation of artemisinin in Artemisia annua L.[J]. Molecules,2018,23(6):E1329.
    [24]冯军,郑彩霞. DREB转录因子在植物非生物胁迫中的作用及应用研究[J].植物生理学报,2011,47(5):437-442.
    [25]高珂,王玲,吴素瑞,等.调控药用植物药效成分合成的转录因子研究进展[J].中草药,2015,46(20):3100-3108.
    [26]张珏,曹茂林,黄玉碧,等. Hrp NCSDS001基因克隆及其表达产物诱导拟南芥基因表达谱变化的研究[J].遗传,2007,29(5):629-636.
    [27] Klempnauer K H,Gonda T J,Bishop J M. Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb:the architecture of a transduced oncogene[J]. Cell,1982,31(2 Pt 1):453-463.
    [28]牛义岭,姜秀明,许向阳.植物转录因子MYB基因家族的研究进展[J].分子植物育种,2016,14(8):2050-2059.
    [29] CHEN Y H,YANG X Y,HE K,et al. The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family[J]. Plant Mol Biol,2006,60(1):107-124.
    [30] Kranz H D,Denekamp M,Greco R,et al. Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana[J]. The Plant J,1998,16(2):263-276.
    [31] Haga N,Kato K,Murase M,et al. R1R2R3-MYB proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana[J].Development,2007,134(6):1101-1110.
    [32] Stracke R,Werber M,Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol,2001,4(5):447-456.
    [33] Polier G,DING J,Konkimalla B V,et al. Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1[J]. Cell Death Dis,2011,2(7):e182.
    [34]朱文振,马龙,李国荣.黄酮类化合物的抗癌作用及作用机制[J].生命科学,2012,24(5):444-449.
    [35] Stracke R,Werber M,Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana[J]. Curr Opin Plant Biol,2001,4(5):447-456.
    [36] JIN J P,TIAN F,YANG D C,et al. Plant TFDB 4. 0:toward a central hub for transcription factors and regulatory interactions in plants[J]. Nucleic Acids Res,2017,45(D1):D1040-D1045.
    [37] ZHANG L,LI X,MA B,et al. The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance[J]. Mol Plant,2017,10(9):1224-1237.
    [38]虎萌.苦荞转录因子Ft MYB1和Ft MYB2对烟草黄酮合成关键酶基因表达和黄酮积累的影响[D].雅安:四川农业大学,2012.
    [39] BAI Y C,LI C L,ZHANG J W,et al. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis[J]. Physiol Plant,2014,152(3):431-440.
    [40]白悦辰.苦荞(Fagopyrum tataricum)转录因子Ft MYB3对花青素合成抑制的分子机制[D].雅安:四川农业大学,2013.
    [41]令狐斌.苦荞黄酮醇代谢转录因子Ft MYB7和Ft MYB9基因克隆及功能分析[D].太原:山西农业大学,2016.
    [42] GAO F,ZHAO H X,YAO H P,et al. Identification,isolation and expression analysis of eight stress-related R2R3-MYB,genes in tartary buckwheat(Fagopyrum tataricum)[J]. Plant Cell Rep,2016,35(6):1385-1396.
    [43] GAO F,ZHOU J,DENG R Y,et al. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene,Ft MYB9,enhances tolerance to drought and salt stresses in transgenic Arabidopsis[J]. J Plant Physiol,2017,214(4):81-90.
    [44] GAO F,YAO H,ZHAO H,et al. Tartary buckwheat Ft MYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis[J]. Plant Physiol Biochem,2016,109(2):387-396.
    [45] ZHOU M,SUN Z,DING M,et al. Ft SAD2 and Ft JAZ1regulate activity of the Ft MYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum[J]. New Phytol,2017,216(3):1-17.
    [46] ZHOU M,WANG C,QI L,et al. Ectopic expression of Fagopyrum tataricum,Ft MYB12,improves cold tolerance in Arabidopsis thaliana[J]. J Plant Growth Regul,2015,34(2):362-371.
    [47] ZHANG K,Logacheva M D,MENG Y,et al. Jasmonateresponsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum[J]. J Exp Bot,2018,69(8):1955-1966.
    [48]黄云吉,邓仁榆,高飞,等.苦荞转录因子基因Ft MYB21的克隆及其非生物胁迫下的表达分析[J].基因组学与应用生物学,2015,34(9):1939-1945.
    [49] ZHOU M L,TANG Y,ZHANG K X,et al. Identification of TT2,gene from floral transcriptome in Fagopyrum tataricum[J]. Food Res Int,2012,54(1):1331-1333.
    [50] Stracke R,Ishihara H,Huep G,et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling[J]. Plant J,2007,50(4):660-677.
    [51] Dubos C,Stracke R,Grotewold E,et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci,2010,15(10):573-581.
    [52] GU Y,LI A M. Progress in research of flavonoid bioactivities[J]. Chin J Appl Biol,2006,12(2):283-286.
    [53] ZHONG R Q,Lee C,McCarthy R L,et al.Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors[J]. Plant Cell Physiol,2011,52(10):1856-1871.
    [54] SUO J,LIANG X,PU L,et al. Identification of Gh MYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton(Gossypium hirsutum L.)[J]. Biochim Biophys Acta,2003,1630(1):25-34.
    [55] Ramírez V,Agorio A,Coego A,et al. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis[J]. Plant Physiol,2011,155(4):1920-1935.
    [56] Van der Ent S,Verhagen B W M,Van Doorn R,et al.MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis[J]. Plant Physiol,2008,146(3):1293-1304.
    [57] Cominelli E,Sala T,Calvi D,et al. Over-expression of the Arabidopsis At MYB41 gene alters cell expansion and leaf surface permeability[J]. Plant J,2007,53(1):53-64.
    [58] Fornale S,SHI X,CHAI C,et al. Zm MYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux[J]. Plant J,2010,64(4):633-644.
    [59]王若菁,杨滨.红花的化学成分及质量标准研究进展[J].中国实验方剂学杂志,2007,13(5):65-69.
    [60]张百霞,周凤琴,郭庆梅.金银花中黄酮类化合物的研究进展[J].中国实验方剂学杂志,2012,18(23):349-352.
    [61]陈永钧,龙晓英,潘素静,等.黄酮类化合物的药效机制及构效关系研究进展[J].中国实验方剂学杂志,2013,19(11):337-344.
    [62]赵雪巍,刘培玉,刘丹,等.黄酮类化合物的构效关系研究进展[J].中草药,2015,46(21):3264-3271.
    [63]邢文,金晓玲.调控植物类黄酮生物合成的MYB转录因子研究进展[J].分子植物育种,2015,13(3):689-696.
    [64] Lepiniec L,Debeaujon I,Routaboul J M,et al. Genetics and biochemistry of seed flavonoids[J]. Annu Rev Plant Biol,2006,57(1):405-430.
    [65]彭德川,唐宇,孙俊秀,等.苦荞和几种野生荞麦中黄酮含量的测定和比较[C]//山西省食品科学技术学会.苦荞产业经济国际论坛论文集:2006年卷,太原:《荞麦动态》编辑部,2006:93-96.
    [66]赵海霞,吴小峰,白悦辰,等.苦荞芽期黄酮合成关键酶和MYB转录因子基因的表达分析[J].农业生物技术学报,2012,20(2):121-128.
    [67]潘孝武,黎用朝,李小湘,等.非生物胁迫条件下植物H2O2的代谢及信号转导[J].中国农业科技导报,2010,12(2):38-43.
    [68]鲁松.干旱胁迫对植物生长及其生理的影响[J].江苏林业科技,2012,39(4):51-54.
    [69]王磊,隆小华,郝连香,等.氮素形态对盐胁迫下菊芋幼苗PSⅡ光化学效率及抗氧化特性的影响[J].草业学报,2012,21(1):133-140.
    [70] LI S J,BAI Y C,LI C L,et al. Anthocyanins accumulate in tartary buckwheat(Fagopyrum tataricum)sprout in response to cold stress[J]. Acta Physiol Plant,2015,37(8):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700