用户名: 密码: 验证码:
基于小尺寸蠕变试验的花岗岩残积土循环荷载下的动应力累积模型(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic stress accumulation model of granite residual soil under cyclic loading based on small-size creep tests
  • 作者:汤连生 ; 赵占仑 ; 陈浩坤 ; 巫燕萍 ; 曾玉超
  • 英文作者:TANG Lian-sheng;ZHAO Zhan-lun;CHEN Hao-kun;WU Yan-ping;ZENG Yu-chao;School of Earth Sciences and Engineering, Sun Yat-sen University;Guangdong Provincial Key Lab of Geodynamics and Geohazards;
  • 关键词:花岗岩残积土 ; 蠕变试验 ; 动应力累积模型
  • 英文关键词:granite residual soil;;creep tests;;dynamic stress accumulation model
  • 中文刊名:ZNGY
  • 英文刊名:中南大学学报(英文版)
  • 机构:School of Earth Sciences and Engineering, Sun Yat-sen University;Guangdong Provincial Key Lab of Geodynamics and Geohazards;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:v.26
  • 基金:Projects(41572277,41877229)supported by the National Natural Science Foundation of China;; Project(2018B030311066)supported by the Natural Science Foundation of Guangdong Province,China;; Project(201607010023)supported by the Science and Technology Program of Guangzhou,China
  • 语种:英文;
  • 页:ZNGY201903022
  • 页数:15
  • CN:03
  • ISSN:43-1516/TB
  • 分类号:232-246
摘要
通过一系列的小尺寸蠕变试验,首先研究了预压应力为100k Pa的花岗岩残积土的蠕变行为,从而获得了其在不同应力水平下的三种不同类型的蠕变曲线。基于流变学理论与花岗岩残积土在不同应力水平下的蠕变特性,建立了花岗岩残积土的蠕变理论模型,与此同时,根据小尺寸蠕变试验也获得了模型中相关参数的实测数据。然后,基于已建立的蠕变模型,通过推导得到了花岗岩残积土循环荷载条件下的动应力累积理论模型。该理论模型中存在一个动应力累积的阈值,同时模型显示花岗岩残积土的动应力累积规律在不同的循环荷载条件下是不同的。最后,对花岗岩残积土小尺寸试样在不同循环荷载条件下进行了动应力累积规律的试验研究,并将试验结果与理论计算结果进行对比,从而验证了理论模型的有效性。
        The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on creep characteristics of the granite residual soil under different stress levels, a creep model of the granite residual soil was established by rheological theory, and related parameters of the model were determined according to the experimental data at the same time. Further on, based on the established creep model, a theoretical model of dynamic stress accumulation in the granite residual soil under cyclic loading was deduced. It is found that there is a threshold of dynamic stress accumulation in this theoretical model. The dynamic stress accumulation laws of the granite residual soil are different under different cyclic loading stress. Finally, with the dynamic stress accumulation laws in the small-size samples of granite residual soil under different cycle loading studied and the experimental results comparing with the theoretical results, it verifies the validity of the theoretical model.
引文
[1]TANG Lian-sheng,CHEN Hao-kun,SANG Hai-tao,ZHANG Si-yang,ZHANG Jie-yi.Determination of traffic-load-influenced depths in clayey subsoil based on the shakedown concept[J].Soil Dynamics and Earthquake Engineering,2015,77(1):182-191.DOI:https://doi.org/10.1016/j.soildyn.2015.05.009.
    [2]TANG Lian-sheng,ZHANG Qing-hua,LIAO Hua-rong.Advance in post-construction settlement of soft subgrade soil[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(S2):3449-3455.DOI:10.3321/j.issn:1000-6915.2006.z2.016.(in Chinese)
    [3]TANG Lian-sheng,XU Tong,LIN Pei-yuan,YU Hai-tao.Studies on dynamic stress characters of layered road system under traffic loading[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(S2):3876-3884.DOI:10.3321/j.issn:1000-6915.2009.z2.084.(in Chinese)
    [4]TANG Lian-sheng,ZHANG Qing-hua,YIN Jing-ze,WUYu-gang,LIAO Hua-rong.Accumulated behavior of subgrade clay under traffic lading[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2007,46(6):143-144.DOI:10.3321/j.issn:0529-6579.2007.06.033.(in Chinese)
    [5]CUI Xin-zhuang,ZHANG Na,ZHANG Jiong,GAO Zhi-jun.In situ tests simulating traffic-load-induced settlement of alluvial silt subsoil[J].Soil Dynamics and Earthquake Engineering,2014,58(1):10-20.DOI:https://doi.org/10.1016/j.soildyn.2013.11.010.
    [6]WERKMEISTER S,DAWSON A R,WELLNER F.Permanent deformation behaviour of granular materials[J].Road Materials and Pavement Design,2005,6(1):31-51.DOI:https://doi.org/10.1080/14680629.2005.9689998.
    [7]PUPPALA A J,SARIDE S,CHOMTID S.Experimental and modeling studies of permanent strains of subgrade soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2009,135(10):1379-1389.DOI:10.1061/(ASCE)GT.1943-5606.0000163.
    [8]TANG Yi-qun,CUI Zheng-dong,ZHANG Xi,ZHAOShu-kai.Dynamic response and pore pressure model of the saturated soft clay around the tunnel under vibration loading of Shanghai subway[J].Engineering Geology,2008,98(3,4):126-132.DOI:https://doi.org/10.1016/j.enggeo.2008.01.014.
    [9]WIERMANN C,WAY TR,HORN R,BAILEY A C,BURTE C.Effect of various dynamic loads on stress and strain behavior of a Norfolk sandy loam[J].Soil and Tillage Research,1999,50(2):127-135.DOI:https://doi.org/10.1016/S0167-1987(98)00199-8.
    [10]SHOOP S,COUTERMARSH B A,DIEMAND D,WAY T.Using soil stress state transducers in freezing ground[C]//Conference on Cold Regions Engineering,2009:562-571.DOI:10.1061/41072(359)55.
    [11]LU Zheng,YAO Hai-lin,WU Wan-ping,CHEN Ping.Dynamic stress and deformation of a layered road structure under vehicle traffic loads:Experimental measurements and numerical calculations[J].Soil Dynamics and Earthquake Engineering,2012,39(1):100-112.DOI:https://doi.org/10.1016/j.soildyn.2012.03.002.
    [12]GARG N,PECHT F,JIA Q.Subgrade stress measurements under heavy aircraft gear loading at FAA national airport pavement test facility[C]//Geo Shanghai International Conference.Shanghai,China.2010:484-491.DOI:10.1061/41104(377)62.
    [13]THAKUR J K,HAN J,POKHAREL S K,PARSONS R L.Performance of geocell-reinforced recycled asphalt pavement(RAP)bases over weak subgrade under cyclic plate loading[J].Geotextiles and Geomembranes,2012,35(1):14-24.DOI:https://doi.org/10.1016/j.geotexmem.2012.06.004.
    [14]EGUCHI T,MURO T.Measurement of compacted soil density in a compaction of thick finishing layer[J].Journal of Terramechanics,2007,44(5):347-353.DOI:https://doi.org/10.1016/j.jterra.2007.10.001.
    [15]SUN Xiao-hui,HAN Jie,KWON J,PARSONS R L,WAYNE M.Radial stresses and resilient deformations of geogrid-stabilized unpaved roads under cyclic plate loading tests[J].Geotextiles and Geomembranes,2015,43(5):440-449.DOI:https://doi.org/10.1016/j.geotexmem.2015.04.018.
    [16]TAFRESHI S N M,KHALAJ O,DAWSON A R.Repeated loading of soil containing granulated rubber and multiple geocell layers[J].Geotextiles and Geomembranes,2014,42(1):25-38.DOI:https://doi.org/10.1016/j.geotexmem.2013.12.003
    [17]ABDELKRIM M,BONNET G,BUHAN P.A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading[J].Computers and Geotechnics,2003,30(6):463-476.DOI:https://doi.org/10.1016/S0266-352X(03)00010-7.
    [18]ALAKUKKU L,WEISSKOPF P,CHAMEN W C T,TIJINKF G J,LINDEN J P,PIRES S,SOMMER C,SPOOR G.Prevention strategies for field traffic-induced subsoil compaction:A review:Part 1.Machine/soil interactions[J].Soil and Tillage Research,2003,73(1,2):145-160.DOI:https://doi.org/10.1016/S0167-1987(03)00107-7.
    [19]WITHERS P J,BHADESHIA H K D H.Residual stress.Part1-Measurement techniques[J].Materials Science and Technology,2001,17(4):355-365.DOI:https://doi.org/10.1179/030716979803276480.
    [20]WITHERS P J,BHADESHIA H K D H.Residual stress.Part2-Nature and origins[J].Materials Science and Technology,2001,17(4):366-375.DOI:10.1179/026708301101510087.
    [21]MICHALOWSKI R L,NADUKURU S S.Static fatigue,time effects,and delayed increase in penetration resistance after dynamic compaction of sands[J].Journal of Geotechnical and Geoenvironmental Engineering,2012,138(5):564-574.DOI:10.1061/(ASCE)GT.1943-5606.0000611.
    [22]HAWLADER B C,MUHUNTHAN B,IMAI G.Viscosity effects on one-dimensional consolidation of clay[J].International Journal of Geomechanics,2003,3(1):99-110.DOI:10.1061/(ASCE)1532-3641(2003)3:1(99).
    [23]MARKGRAF W,HORN R,PETH S.An approach to rheometry in soil mechanics-Structural changes in bentonite,clayey and silty soils[J].Soil and Tillage Research,2006,91(1,2):1-14.DOI:https://doi.org/10.1016/j.still.2006.01.007.
    [24]PISANòF,JEREMI?B.Simulating stiffness degradation and damping in soils via a simple visco-elastic-plastic model[J].Soil Dynamics and Earthquake Engineering,2014,63(1):98-109.DOI:https://doi.org/10.1016/j.soildyn.2014.02.014.
    [25]YIN Jian-hua.Fundamental issues of elastic viscoplastic modeling of the time-dependent stress-strain behavior of geomaterials[J].International Journal of Geomechanics,2015,15(5):A4015002.DOI:https://doi.org/10.1061/(ASCE)GM.1943-5622.0000485.
    [26]DONG Qiao,HUANG Bao-shan.Laboratory evaluation on resilient modulus and rate dependencies of rap used as unbound base material[J].Journal of Materials in Civil Engineering,2014,26(2):379-383.DOI:https://doi.org/10.1061/(ASCE)MT.1943-5533.0000820.
    [27]WANG Nian-xiang,ZHANG Wei-min,GU Xing-wen,ZENG You-jin.Model test on inundation swelling deformation of expansive soil foundation[J].Journal of Highway and Transportation Research and Development2008,3(2):72-76.DOI:10.1061/JHTRCQ.0000248.
    [28]RABOTNOV Y N.Equilibrium of an elastic medium with after-effect[J].Fractional Calculus and Applied Analysis,2014,17(3):684-696.DOI:https://doi.org/10.2478/s13540-014-0193-1.
    [29]QIAN,Jian-gui,WANG Yong-gang,YIN Zhen-yu,HUANGMao-song.Experimental identification of plastic shakedown behavior of saturated clay subjected to traffic loading with principal stress rotation[J].Engineering Geology,2016,214:29-42.DOI:https://doi.org/10.1016/j.enggeo.2016.09.012.
    [30]HU Bo,YANG Sheng-qi,XU Peng.A nonlinear rheological damage model of hard rock[J].Journal of Central South University,2018,25(7):1665-1677.DOI:https://doi.org/10.1007/s11771-018-3858-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700