用户名: 密码: 验证码:
带集气腔的脉冲射流冲击换热实验和数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental and numerical study on pulsed-jet impingement heat transfer with an additional collection chamber
  • 作者:唐婵 ; 张靖周 ; 谭晓茗 ; 吕元伟
  • 英文作者:TANG Chan;ZHANG Jingzhou;TAN Xiaoming;Lü Yuanwei;Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;School of Energy and Power Engineering,Nanjing Institute of Technology;
  • 关键词:射流冲击 ; 脉冲射流 ; 集气腔 ; 射流孔 ; 对流换热
  • 英文关键词:jet impingement;;pulsed-jet;;additional collection chamber;;jet hole;;convective heat transfer
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:南京航空航天大学能源与动力学院江苏省航空动力系统重点实验室;南京工程学院能源与动力工程学院;
  • 出版日期:2019-06-12 08:44
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(51776097);; 江苏省航空动力系统重点实验室开放基金(APS2017002)
  • 语种:中文;
  • 页:HKDI201906016
  • 页数:10
  • CN:06
  • ISSN:11-2297/V
  • 分类号:157-166
摘要
实验和数值研究了带集气腔的单股脉冲射流冲击平直靶面对流换热特性。实验测试的脉冲频率(f)为5~40Hz,射流雷诺数(Re)为5 000~15 000,脉冲占空比(R)为0.2~0.8,射流冲击间距比(H/d)为2~10;相对于实验测试,数值计算的参数范围有所拓宽,即5Hz≤f≤200Hz,5 000≤Re≤20 000,0.2≤R≤1.0。研究结果表明,与无集气腔脉冲射流相比,带集气腔的脉冲射流能够增强对流换热,在驻点附近的努塞尔数大约有8%~19%的提高;集气腔的存在,在射流出口处形成紧缩效应而提高脉冲值班阶段的射流趋近靶面速度,同时在非值班阶段能够形成一定的流动惯性效应。在研究的参数范围内,存在特定的、相对较优的脉冲参数,如f=80Hz,R=0.8,对于受限空间的脉冲射流冲击,H/d=4是相对较优的射流冲击间距比。
        An experimental and numerical study was performed to study the impingement heat transfer on the flat target surface produced by apulsed-jet with an additional collection chamber.The current test was conducted under the following conditions,such as pulse frequency(f)ranged from 5 Hz to 40 Hz,jet Reynolds number(Re)ranged from 5000 to 15 000,pulsation duty cycle(R)ranged from 0.2 to 0.8,jet-to-surface distance(H/d)ranged from 2 to 10.In the numerical simulations,the above parameter ranges were relatively extended,for example,5 Hz≤f≤200 Hz,5 000≤Re≤20 000 and 0.2≤R≤1.0.With respect to the pulsed-jet impingement without collection chamber,the pulsed-jet with an additional collection chamber was found to enhance the convective heat transfer,with a 8%-19%increase of the stagnation Nusselt number.Due to the additional collection chamber,the vena contracta effect near the jet orifice increased the approaching velocity towarded the target surface at the jet-on process.At the jet-off process the inertia role inside the additional collection chamber behaved.Among the current research conditions,the relatively optimal pulsation parameters such as f=80 Hz and R=0.8 were demonstrated.For the pulsed-jet impingement on a confined target,H/d=4 was a relatively optimal jet-to-surface distance.
引文
[1]朱永峰,方玉峰,封文春.某型飞机发动机短舱防冰系统设计[J].航空动力学报,2012,27(6):1326-1331.ZHU Yongfeng,FANG Yufeng,FENG Wenchun.Design and calculation of aircraft nacelle anti-icing system[J].Journal of Aerospace Power,2012,27(6):1326-1331.(in Chinese)
    [2]柯鹏,杨慧赟,王俊凯,等.航空发动机帽罩热气膜防冰的加热特性[J].航空动力学报,2018,33(3):530-539.KE Peng,YANG Huiyun,WANG Junkai,et al.Heating characteristics of aero-engine nose cone with film-heating anti-icing system[J].Journal of Aerospace Power,2018,33(3):530-539.(in Chinese)
    [3]张书华,张丽,朱惠人,等.涡轮机匣换热实验[J].航空动力学报,2011,26(5):1011-1016.ZHANG Shuhua,ZHANG Li,ZHU Huiren,et al.Experimental investigation of heat transfer characteristics in turbine casing[J].Journal of Aerospace Power,2011,26(5):1011-1016.(in Chinese)
    [4]张井山,毛军逵,李毅,等.高压涡轮主动间隙控制机匣内部换热特性实验[J].航空动力学报,2014,29(2):298-304.ZHANG Jingshan,MAO Junkui,LI Yi,et al.Experiment on heat transfer characteristics inside the casing of high pressure turbine with active clearance control[J].Journal of Aerospace Power,2014,29(2):298-304.(in Chinese)
    [5]LEE J H,LEE S J.The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement[J].International Journal of Heat and Mass Transfer,2000,43(18):3497-3509.
    [6]徐亮,任德祖,马永浩,等.不同形状喷嘴的旋流冲击射流压力损失和传热特性研究[J].航空动力学报,2018,33(11):2678-2686.XU Liang,REN Dezu,MA Yonghao,et al.Pressure loss and heat transfer characteristics experiment of swirling impinging jet with different shape nozzles[J].Journal of Aerospace Power,2018,33(11):2678-2686.(in Chinese)
    [7]HANSEN L G,WEBB B W.Air jet impingement heat transfer from modified surfaces[J].International Journal of Heat and Mass Transfer,1993,36(4):989-997.
    [8]陈鹏,饶宇,万超一.具有微小W型肋的结构化表面冲击冷却实验[J].航空动力学报,2017,32(9):2110-2117.CHEN Peng,RAO Yu,WAN Chaoyi.Impingement cooling experiment of structured surface with micro-W-shaped ribs[J].Journal of Aerospace Power,2017,32(9):2110-2117.(in Chinese)
    [9]VIOLATO D,IANIRO A,CARDONE G,et al.Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets[J].International Journal of Heat and Fluid Flow,2012,37:22-36.
    [10]GUAN T,ZHANG J Z,SHAN Y,et al.Conjugate heat transfer on leading edge of a conical wall subjected to external cold flow and internal hot jet impingement from chevron nozzle:Part 1experimental analysis[J].International Journal of Heat and Mass Transfer,2017,106:329-338.
    [11]CARLOMAGNO G M,IANIRO A.Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance:a review[J].Experimental Thermal and Fluid Science,2014,58:15-35.
    [12]ZUMBRUNNEN D A,AZIZ M.Convective heat transfer enhancement due to intermittency in an impinging jet[J].Journal of Heat Transfer,1993,115(1):91-98.
    [13]SHERIFF H S,ZUMBRUNNEN D A.Effect of flow pulsations on the cooling effectiveness of an impinging jet[J].Journal of Heat Transfer,1994,116(4):886-895.
    [14]HOFMANN H M,MOVILEANU D L,KIND M,et al.Influence of a pulsation on heat transfer and flow structure in submerged impinging jets[J].International Journal of Heat and Mass Transfer,2007,50(17/18):3638-3648.
    [15]MIDDELBERG G,HERWIG H.Convective heat transfer under unsteady impinging jets:the effect of the shape of the unsteadiness[J].Heat and Mass Transfer,2009,45(12):1519-1532.
    [16]ZHOU J W,WANG Y G,MIDDELBERG G,et al.Unsteady jet impingement:heat transfer on smooth and nonsmooth surfaces[J].International Communications in Heat and Mass Transfer,2009,36(2):103-110.
    [17]PERSOONS T,BALGAZINA K,BROWN K,et al.Scaling of convective heat transfer enhancement due to flow pulsation in an axisymmetric impinging jet[J].Journal of Heat Transfer,2013,135(11):803-816.
    [18]吕元伟,张靖周,唐婵,等.脉冲射流冲击平直表面的对流换热实验[J].航空学报,2018,39(4):119-127.Lü Yuanwei,ZHANG Jingzhou,TANG Chan,et al.Experimental of convective heat transfer of pulsed jet impingement on a flat surface[J].Acta Aeronautica et Astronautica Sinica,2018,39(4):119-127.(in Chinese)
    [19]MOFFAT R J.Describing the uncertainties in experimental results[J].Experimental Thermal and Fluid Science,1988,1(1):3-17.
    [20]XU P,QIU S,YU M Z,et al.A study on the heat and mass transfer properties of multiple pulsating impinging jets[J].International Communications in Heat and Mass Transfer,2012,39(3):378-382.
    [21]MOHAMMADPOUR J,ZOLFAGHARIAN M M,MU-JUMDAR A S,et al.Heat transfer under composite arrangement of pulsed and steady turbulent submerged multiple jets impinging on a flat surface[J].International Journal of Thermal Sciences,2014,86:139-147.
    [22]PAKHOMOV M A,TEREKHOV V I.Effect of pulse frequency on heat transfer at the stagnation point of an impinging turbulent jet[J].High Temperature,2013,51(2):256-261.
    [23]PAKHOMOV M A,TEREKHOV V I.Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet[J].International Journal of Thermal Sciences,2015,87:85-93.
    [24]SCHETZ J A,FUHS A E.Fundamentals of fluid mechanics[M].New York:John Wiley&Sons,1999.
    [25]BAYDAR E,OZMEN Y.An experimental investigation on flow structures of confined and unconfined impinging air jets[J].Heat and Mass Transfer,2006,42(4):338-346.
    [26]SAN J Y,CHEN J J.Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array[J].International Journal of Heat and Mass Transfer,2014,71:8-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700