用户名: 密码: 验证码:
宽流道反渗透膜元件抗污染性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of anti-fouling performance of wider spacer RO membrane module
  • 作者:吴降麟 ; 张朝晖 ; 王亮 ; 赵斌 ; 李腾飞 ; 陈萌萌
  • 英文作者:WU Jianglin;ZHANG Zhaohui;WANG Liang;ZHAO Bin;LI Tengfei;CHEN Mengmeng;School of Environmental and Chemical Engineering, Tianjin Polytechnic University;State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University;
  • 关键词:反渗透膜组件 ; 宽流道 ; 隔网定向 ; 膜污染 ; 优化设计
  • 英文关键词:reverse osmosis membrane modules;;wider spacer;;spacer orientation;;membrane fouling;;optimal design
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:天津工业大学环境与化学工程学院;天津工业大学省部共建分离膜与膜过程国家重点实验室;
  • 出版日期:2019-01-02 10:54
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家重点研发计划项目(2016YFC0400506);; 国家自然科学基金面上项目(51678408)
  • 语种:中文;
  • 页:HGSZ201904024
  • 页数:9
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:211-219
摘要
以活性蓝MB-R和硫酸钠模拟高盐染色废水,分析了宽流道反渗透膜组件的抗污染性能,对比研究了不同流道宽度和膜内隔网定向角度变化对于膜组件抗污染性能及运行能耗的影响。实验结果表明,适当增加流道宽度可以有效减缓膜通量衰减速率,延长膜运行时间,但流道宽度增加到一定程度后膜组件抗污染性能不再随流道宽度增加而有明显改善。进水隔网定向角度对膜组件抗污染性能影响非常明显。实验结果表明,在流道宽度不变前提下,进水隔网定向角度从40°变成45°时165 min内膜通量衰减速率下降3.9%,一个低压冲洗周期内的膜运行时间延长了35.7%,低压冲洗后膜通量恢复率提高了4.5%。综合trade-off效应和进水压降分析,与普通反渗透组件相比,当宽流道组件的进水流道宽度达到30 mil(1 mil=0.025 mm),隔网定向45°时具有更优越的抗污染性能和更低的运行能耗。
        The high-salt dyeing wastewater was simulated by reactire blue MB-R and sodium sulfate. The effects of different channel height and spacer orientation on the anti-fouling performance and energy consumption of RO membrane modules were compared. The results showed that the membrane flux decline could be slowed down and the membrane running time could be prolonged by increasing the spacer thickness appropriately. However, the antifouling performance of the membrane module could not be improved significantly with the increase of the spacer thickness when the spacer thickness was increased to a certain extent. On the other hand, the influence of spacer orientation on the anti-fouling performance of membrane module was very obvious. The results suggested that when the spacer thickness remained unchanged and the spacer orientation changed from 40° to 45°, the membrane flux decline rate decreased by 3.9% after 165 min of operation, the filtration time of one low pressure flushing cycle was prolonged by 35.7%, and the flux recovery rate was increased by 4.5% after the low pressure flushing. The comprehensive analysis based on the trade-off effects and the feed channel pressure drops indicated that a better anti-fouling performance and lower operation energy consumption can be obtained when the feed channel height was set at 30 mil and the spacer orientation was set at 45°.
引文
[1] Joo S H, Tansel B. Novel technologies for reverse osmosis concentrate treatment:a review[J]. Journal of Environmental Management, 2015, 150:322-335.
    [2] Qi S, Wang R, Chaitra G K M, et al. Aquaporin-based biomimetic reverse osmosis membranes:stability and long term performance[J]. Journal of Membrane Science, 2016, 508:94-103.
    [3] Jiang S, Li Y, Ladewig B P. A review of reverse osmosis membrane fouling and control strategies[J]. Science of the Total Environment, 2017, 595:567-583.
    [4] Safarpour M, Khataee A, Vatanpour V. Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2with improved desalination performance[J]. Journal of Membrane Science, 2015, 489(5):43-54.
    [5] Asadollahi M, Bastani D, Musavi S A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification:a review[J]. Desalination, 2017, 420:330-383.
    [6] Piyadasa C, Ridgway H F, Yeager T R, et al. The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes—a review[J]. Desalination, 2017,418:19-34.
    [7] Tirado M L M, Bass M, Piatkovsky M, et al. Assessing biofouling resistance of a polyamide reverse osmosis membrane surfacemodified with a zwitterionic polymer[J]. Journal of Membrane Science, 2016, 520:490-498.
    [8]祝敏,沈广录,黄洪伟,等.宽流道反渗透膜耐污染性分析及其在电厂的应用[J].工业水处理, 2017, 37(3):110-112.Zhu M, Shen G L, Huang H W, et al. Pollution-resistant analysis of wider spacer RO membrane and its application in power plants[J]. Industrial Water Treatment, 2017, 37(3):110-112.
    [9] Hui Y, Yang B Q, Yang J M, et al. Bioevaporation treatment of concentrated landfill leachate from two-stage DTRO[J]. China Environmental Science, 2017, 37(9):3437-3445.
    [10] Kavianipour O, Ingram G D, Vuthaluru H B. Investigation into the effectiveness of feed spacer configurations for reverse osmosis membrane modules using Computational Fluid Dynamics[J].Journal of Membrane Science, 2017, 526:156-171.
    [11] Gong H, Yan Z, Liang K Q, et al. Concentrating process of liquid digestate by disk tube-reverse osmosis system[J]. Desalination,2013, 326(10):30-36.
    [12] Zuo J, Song Y, Wang J. Application of DTRO technology in the treatment of landfill leachate[J]. Membrane Science&Technology, 2011, 31(2):110-115.
    [13]杨庆峰.卷式反渗透膜器浓水侧流道缺陷诊断[J].化工学报,2006, 57(6):1319-1322.Yang Q F. Diagnosis of membrane passage defects for reverse osmosis spiral wound membrane module[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(6):1319-1322.
    [14] Geise G M, Park H B, Sagle A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J].Journal of Membrane Science, 2011, 369(1):130-138.
    [15] Yang Z, Zhou Z W, Guo H, et al. Tannic acid/Fe3+nanoscaffold for interfacial polymerization:toward enhanced nanofiltration performance[J]. Environ. Sci. Technol., 2018, 52(16):9341-9349.
    [16] Tan Z, Chen S, Peng X, et al. Polyamide membranes with nanoscale turing structures for water purification[J]. Science,2018, 360(6388):518-521.
    [17] Araújo P A, Kruithof J C, Loosdrecht M C M V, et al. The potential of standard and modified feed spacers for biofouling control[J]. Journal of Membrane Science, 2012, 403/404(404):58-70.
    [18] Majamaa K, Aerts P E M, Groot C, et al. Industrial water reuse with integrated membrane system increases the sustainability of the chemical manufacturing[J]. Desalination&Water Treatment,2010, 18(1/2/3):17-23.
    [19] Haidari A H, Heijman S G J, van der Meer W G J. Optimal design of spacers in reverse osmosis[J]. Separation and Purification Technology, 2018, 192:441-456.
    [20] Costa A R D, Fane A G, Wiley D E. Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration[J]. Journal of Membrane Science, 1994, 87(1/2):79-98.
    [21] Darby R, Darby R, Chhabra R P. Chemical Engineering Fluid Mechanics, Revised and Expanded[M]. New York:Marcel Dekker Inc., 2001:330-358.
    [22] Hoek E M V, Kim A S, Elimelech M. Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations[J]. Environmental Engineering Science, 2002, 19(6):357-372.
    [23] Costa A R D, Fane A G, Fell C J D, et al. Optimal channel spacer design for ultrafiltration[J]. Journal of Membrane Science, 1991,62(3):275-291.
    [24] Fimbres-Weihs G A, Wiley D E. Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow[J]. Journal of Membrane Science, 2007, 306(1):228-243.
    [25] Neal P R, Li H, Fane A G, et al. The effect of filament orientation on critical flux and particle deposition in spacer-filled channels[J]. Journal of Membrane Science, 2003, 214(2):165-178.
    [26] Araújo P A, Miller D J, Correia P B, et al. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control[J]. Desalination, 2012, 295(6):1-10.
    [27] Chapman R G, Ostuni E, Liang M N, et al. Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria[J]. Langmuir, 2001, 17(4):1225-1233.
    [28] Brzozowska A M, Spruijt E, Keizer A D, et al. On the stability of the polymer brushes formed by adsorption of Ionomer Complexes on hydrophilic and hydrophobic surfaces[J]. Journal of Colloid&Interface Science, 2011, 353(2):380-391.
    [29] Ahmad A L, Lau K K, Bakar M Z A, et al. Integrated CFD simulation of concentration polarization in narrow membrane channel[J]. Computers&Chemical Engineering, 2005, 29(10):2087-2095.
    [30] Amokrane M, Sadaoui D, Dudeck M, et al. New spacer designs for the performance improvement of the zigzag spacer configuration in spiral-wound membrane modules[J]. Desalination&Water Treatment, 2016, 57(12):5266-5274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700