用户名: 密码: 验证码:
陶瓷膜组件回收烟气水分及余热性能实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental research on performance of ceramic membrane module for water and waste heat recovery from flue gas
  • 作者:陈海平 ; 冯义钧 ; 杨博然 ; 韦佳娣 ; 李祥升
  • 英文作者:CHEN Haiping;FENG Yijun;YANG Boran;WEI Jiadi;LI Xiangsheng;National Thermal Power Engineering & Technology Research Center, North China Electric Power University;
  • 关键词:陶瓷复合膜 ; 烟气余热 ; 回收水速率 ; 平均对流凝结Nu数 ; 热回收效率 ; Zhukaukas关联式
  • 英文关键词:ceramic membrane;;flue gas waste heat;;water recovery rate;;average convective condensation Nusselt number;;heat recovery efficiency;;Zhukaukas correlation
  • 中文刊名:RLFD
  • 英文刊名:Thermal Power Generation
  • 机构:华北电力大学国家火力发电工程技术研究中心;
  • 出版日期:2019-02-02 18:31
  • 出版单位:热力发电
  • 年:2019
  • 期:v.48;No.387
  • 基金:国家重点研发计划项目(2018YFB0604302)~~
  • 语种:中文;
  • 页:RLFD201902007
  • 页数:8
  • CN:02
  • ISSN:61-1111/TM
  • 分类号:49-56
摘要
利用陶瓷膜组件回收烟气中水分及余热有望成为火电厂节能节水的一条有效途径。为了探究陶瓷膜组件回收水分及余热的性能,本文采用孔径2μm的陶瓷膜管组成的陶瓷膜组件进行了烟气中水蒸气及余热的回收实验,研究了不同烟气温度(40~100℃)、烟气流量(320~440 m3/h)、冷却水温度(11~15℃)和冷却水流量(0.62~0.72 m3/h)对陶瓷膜组件回收水与余热性能的影响。实验结果表明:回收水速率随烟气温度及烟气流量的升高而增大,随冷却水温度的增大而降低,而冷却水流量对回收水速率影响不大;烟气平均对流凝结努塞尔(Nu)数和Zhukaukas关联式所得Nu数均随烟气温度、烟气流量的升高而增大,且烟气平均对流凝结Nu数始终大于Zhukaukas关联式所得Nu数;热回收效率随烟气温度及冷却水流量的增大而提高,随冷却水温度的增大而降低,而随着烟气流量的增大,热回收效率先提高后降低。该研究结果可为陶瓷膜组件在火电厂实际应用提供了借鉴。
        Water and waste heat recovery by ceramic membrane module from flue gas is expected to be an effective way to save energy and water in thermal power plants. In order to explore the performance of ceramic membrane module to recover water and waste heat, a ceramic membrane preparation experiment was conducted, and a ceramic membrane module made of ceramic membrane tubes with pore sizes of 2 μm was used to recover the water vapor and waste heat from flue gas, and its performance of water and heat recovery was studied at different flue gas temperatures(40~100 ℃), flue gas flows(320~440 m3/h), cooling water temperatures(11-15 ℃) and cooling water flows(0.62~0.72 m3/h). The experimental results show that, the water recovery rate increased with the growth of flue gas temperature and flue gas flow, and decreased with the increasing cooling water temperature. The cooling water flow rate had little effect on the water recovery rate. Both the average convective condensation Nusselt number of the flue gas and the Zhukaukas correlation Nusselt number increased with the flue gas temperature and flue gas flow rate. The average convective condensation Nusselt number of the flue gas was always larger than that of the Zhukaukas correlation Nusselt number. The heat recovery efficiency increased with the flue gas temperature and the cooling water flow, and declined with the increasing cooling water flow rate. As the flow gas rate increased, the heat recovery efficiency increased at first and then decreased. The research results provide a reference for the practical application of ceramic membrane modules in thermal power plants.
引文
[1]中国电力企业联合会网.2017年中国火电行业研究报告:火电发电量占比下降[EB/OL].[2018-04-26].https://www.baidu.com/link?url=ucbI8270pRVLpm8Hus2evz1pJEgqCizvLV4wKxiH6cBr-qJy0WL3dw0Ic3Gtfh2ZqWzCO9o6CzfPJ4xUMfmpsq&wd=&eqid=8fb80ac50001914b000000035c0614d7.China Electric Power Enterprise Federation.2017 thermal power industry research report in China:thermal power generating capacity decreased[EB/OL].[2018-04-26].https://www.baidu.com/link?url=ucbI8270pRVLpm8Hus2evz1pJEgqCizvLV4wKxiH6cBr-qJy0WL3dw0Ic3Gtfh2ZqWzCO9o6CzfPJ4xUMfmpsq&wd=&eqid=8fb80ac50001914b000000035c0614d7.
    [2]中华人民共和国水利部.2016年中国水资源公报[R/OL].(2016-07-11)[2018-03-18].http://www.mwr.gov.cn/sj/tjgb/szygb/201707/t20170711_955305.html.People’s Republic of China Ministry of Water Resources.2016 China water resources bulletin[R/OL].(2016-07-11)[2018-03-18].http://www.mwr.gov.cn/sj/tjgb/szygb/201707/t20170711_955305.html.
    [3]潘荔,刘志强,张博.中国火电节水现状分析及措施建议[J].中国电力,2017,50(11):158-163.PAN Li,LIU Zhiqiang,ZHANG Bo.Comprehensive analysis and related measures on current situation of water saving of thermal power generation in China[J].Electric Power,2017,50(11):158-163.
    [4]杨勇平.中国火力发电能耗状况及展望[J].中国电机工程学报,2013,33(23):1-11.YANG Yongping.Situation and prospect of energy consumption for China’s thermal power generation[J].Proceedings of the CSEE,2013,33(23):1-11.
    [5]CHEN H P,ZHOU Y N,SU X,et al.Experimental study of water recovery from flue gas using hollow micro-nano porous ceramic composite membranes[J].Journal of Industrial&Engineering Chemistry,2017,57:115.
    [6]陈海平,刘彦达,周亚男.中空纤维膜法回收火电厂烟气中水蒸气[J].热力发电,2017,46(1):100-105.CHEN Haiping,LIU Yanda,ZHOU Yanan.Experimental study on recycling water vapor from flue gas of thermal power plants using hollow fiber membrane[J].Thermal Power Generation,2017,46(1):100-105.
    [7]田路泞,韩哲楠,董勇,等.燃煤电厂湿烟气余热及水分回收技术研究[J].洁净煤技术,2017,23(5):105-110.TIAN Luning,HAN Zhe’nan,DONG Yong,et al.Research on the technology of recovering waste heat and moisture from wet flue gas in coal-fired power plants[J].Clean Coal Technology,2017,23(5):105-110.
    [8]CHEN H,ZHOU Y,CAO S,et al.Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes[J].Applied Thermal Engineering,2017,110:686-694.
    [9]WANG D.Advanced energy and water recovery technology from low grade waste heat[R].Gas Technology Institute,2011:1-42.
    [10]WANG D.Transport membrane condenser for water and energy recovery from power plant flue gas[R].Gas Technology Institute,2012:28-39.
    [11]WANG D,BAO A,KUNC W,et al.Coal power plant flue gas waste heat and water recovery[J].Applied Energy,2012,91(1):341-348.
    [12]HU H W,TANG G H,NIU D.Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery[J].Scientific Reports,2016,6:27274.
    [13]WANG T,YUE M,QI H,et al.Transport membrane condenser for water and heat recovery from gaseous streams:performance evaluation[J].Journal of Membrane Science,2015,484:10-17.
    [14]SMART R M,GLASSER F P.The subsolidus phase equilibria and melting temperatures of MgO-Al2O3-SiO2compositions[J].Ceramics International,1981,7(3):90-97.
    [15]DONG Y,LIU X,MA Q,et al.Preparation of cordieritebased porous ceramic micro-filtration membranes using waste fly ash as the main raw materials[J].Journal of Membrane Science,2006,285(1/2):173-181.
    [16]COLBURN A P,HOUGEN O A.Design of cooler condensers for mixtures of vapors with noncondensing gases[J].Industrial&Engineering Chemistry,1933,26(11):1178-1182.
    [17]A.A.茹卡乌斯卡斯.换热器内的对流换热[M].马昌文,居滋泉,肖宏才,译.北京:科学出版社,1972:337-370.ZHUKAUKAS A A.Convection heat exchange in heat exchanger[M].MA Changwen,JU Ziquan,XIAO Hongcai,translated.Beijing:Science Press,1972:337-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700