用户名: 密码: 验证码:
转炉溅渣护炉冶炼因素对气化脱磷的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Slag Splashing on Gasification Dephosphorization in Converter
  • 作者:么洪勇
  • 英文作者:Yao Hongyong;The Second Steel and Rolling Department of Tangshan Steel Company of Hebei Steel Group;
  • 关键词:转炉 ; 溅渣护炉 ; 气化脱磷 ; 气体流量
  • 英文关键词:converter;;slag splashing in converter;;gasification dephosphorization;;gas flow rate
  • 中文刊名:GTFT
  • 英文刊名:Iron Steel Vanadium Titanium
  • 机构:河钢唐钢二钢轧厂;
  • 出版日期:2017-12-15
  • 出版单位:钢铁钒钛
  • 年:2017
  • 期:v.38;No.168
  • 语种:中文;
  • 页:GTFT201706027
  • 页数:5
  • CN:06
  • ISSN:51-1245/TF
  • 分类号:114-118
摘要
针对顶底复吹转炉炼钢生产,结合气化脱磷热力学理论分析,研究了供氮强度、焦粉加入增加比例和底吹气体流量分别对气化脱磷的影响。结果表明,在炼钢温度下用碳质脱磷剂还原炉渣中P_2O_5是可行的,选择以焦粉作为还原剂更加合理;为了保证气化脱磷率在36%以上,应将供氮强度、焦粉加入增加比例和底吹气体流量分别控制在3.5~4.5 m~3/(t·min)、8%~12%和280~400 m~3/h为好。
        The effect of nitrogen supplying intensity and ratio of coke powder and bottom blowing gas flow rate on gasification dephosphorization are studied,in combination with thermodynamic analysis of gasification dephosphorization for top and bottom combined blowing converter in this paper.The result shows that it is feasible to use carbon-based dephosphorizer to reduce P_2O_5 in slag at steelmaking temperature.and it is more reasonable to choose coke powder as reducing agent.In order to achieve the gasification dephosphorization rate more than 36%,the nitrogen supplying intensity,ratio of coke powder and bottom blowing gas flow rate should be controlled at 4.5 ~ 6.5 m~3/( t·min),8% ~ 12% and 280 ~ 400 m~3/h respectively.
引文
[1]Peng Ben.Modification and its physicochemical property of molten steel slag[D].Beijing:University of Science and Technology Beijing,2016.(彭犇.热态钢渣改性及改性渣物理化学性质研究[D].北京:北京科技大学,2016.)
    [2]Cui Yuyuan.Fundamental research on recovery of valuable components and resource utilization of steel slag[D].Shengyang:Northeastern University,2013.(崔玉元.钢渣中有价组元回收及资源化利用的基础研究[D].沈阳:东北大学,2013.)
    [3]Hao Xiaodi,Yi Lankai.Situation and prospects of phosphorus recovery techniques[J].Acta Scientiae Circumstantiae,2010(5):897-907.(郝晓地,衣兰凯.磷回收技术的研发现状及发展趋势[J].环境科学学报,2010(5):897-907.)
    [4]Wang Xinhua,Li Jinzhu,Liu Fenggang.Technological progress of BOF steelmaking in period of development mode transition[J].Steelmaking,2017,33(1):1-11.(王新华,李金柱,刘凤刚.转型发展形势下的转炉炼钢科技进步[J].炼钢,2017,33(1):1-11.)
    [5]Zhao Changliang,Sun Yanhui,Yuan Tianxiang,et al.Dephosphorization pretreatment in LD converter and less-slag steelmaking process[J].Iron and Steel,2016,51(5):28-36.(赵长亮,孙彦辉,袁天祥,等.转炉预脱磷与“全三脱”铁水少渣冶炼技术[J].钢铁,2016,51(5):28-36.)
    [6]LüYanchun,Wang Xinhua,Zhu Guosen,et al.Continuous circulating smelting process based on multi-refining converter melting technology[J].Chinese Journal of Engineering,2016,38(3):335-341.(吕延春,王新华,朱国森,等.基于多功能转炉炼钢法的连续循环冶炼过程[J].工程科学学报,2016,38(3):335-341.)
    [7]Jung S,Do Y,Choi J.Reduction behaviour of BOF type slags by solid carbon[J].Steel Research International,2006,77.
    [8]Morita K,Guo M,Oka N,et al.Resurrection of the iron and phosphorus resource in steel-making slag[J].Journal of Material Cycles&Waste Management,2002,4(2):93-101.
    [9]Ai Liqun,Zhang Yanlong,Zhu Yiheng.Research on carbothermic reduction for dephosphorization from converter slag by microwave heating[J].Iron Steel Vanadium Titanium,2015,36(6):63-67.(艾立群,张彦龙,朱祎姮.微波碳热还原转炉钢渣脱磷研究[J].钢铁钒钛,2015,36(6):63-67.)
    [10]Li Guangqiang,Zhang Feng,Zhang Li,et al.Recycle of converter slag by high temperature carbon thermal reduction[J].Journal of Materials and Metallurgy,2003(2):167-172.(李光强,张峰,张力,等.高温碳热还原进行转炉渣资源化的研究[J].材料与冶金学报,2003(2):167-172.)
    [11]Wei Shoukun.Metallurgical process thermodynamics[M].Beijing:Beijing Science Press,2010.(魏寿昆.冶金过程热力学[M].北京:科学出版社,2010.)
    [12]Huang Xihu.Principles of iron and steel metallurgy(3rd edition)[M].Beijing:Metallurgical Industry Press,2004.(黄希祜.钢铁冶金原理(第3版)[M].北京:冶金工业出版社,2004.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700