用户名: 密码: 验证码:
含相变材料的定型复合建材储能调温及力学特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy storage and mechanical properties of shaped composite building materials containing phase change materials
  • 作者:鲁进利 ; 李洋 ; 韩亚芳 ; 杨高杰 ; 钱付平
  • 英文作者:LU Jinli;LI Yang;HAN Yafang;YANG Gaojie;QIAN Fuping;School of Civil Engineering and Architecture, Anhui University of Technology;School of Energy and Environment, Anhui University of Technology;School of Environment and Architecture, University of Shanghai for Science and Technology;
  • 关键词:相变 ; 相变微胶囊 ; 制备 ; 复合材料 ; 热能储存
  • 英文关键词:phase change;;microencapsulated phase change material;;preparation;;composites;;thermal energy storage
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:安徽工业大学建筑工程学院;安徽工业大学能源与环境学院;上海理工大学环境与建筑学院;
  • 出版日期:2019-08-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:安徽省自然科学基金(1508085QE95);; 国家自然科学基金(51306002)
  • 语种:中文;
  • 页:HGJZ201908036
  • 页数:8
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:310-317
摘要
使用微胶囊化和直接吸附法两种方式将相变材料与水泥结合分别制成了含相变微胶囊水泥基复合建材及含相变材料水泥基复合建材,搭建实验测试系统,对复合建材的调温储能特性进行了测试。微胶囊化相变材料和纯相变材料的加入对水泥基建材的微观结构形貌具有较为明显的影响。热重曲线显示纯水泥、相变微胶囊-水泥、相变材料-水泥试样的失重率依次增加,相变微胶囊-水泥式样的稳定性最好;复合成分所占质量分数相同时,相变材料-水泥试块强度略低于相变微胶囊-水泥试块;调温测试表明,在水泥中添加相变微胶囊颗粒或纯相变材料时均具有一定的调温储能功能,能明显减缓水泥基建材的温度在相变温度附近的波动;尽管直接吸附法制备的相变材料-水泥复合建材具有较好的调温性能,但其可循环性较差,伴有刺激性气味逸出,实用性较差。因此相变微胶囊-水泥复合较适宜作为新型建材推广使用。
        In this paper, based on the experimental method, the n-dodecanol as phase change materials was combined with cement using microencapsulation and direct adsorption method to prepare microencapsulated phase change material cement-based composite building materials(MPCM-concrete)and phase change material cement-based composite building materials(PCM-concrete), respectively.Parameters such as microstructure, thermal performance, and compression resistance were tested and analyzed. The SEM results showed that the addition of MPCM and PCM had a significant effect on the microstructure of cement-based building materials. The TGA curves indicated that the weight loss rate of concrete, MPCM-concrete and PCM-concrete samples increased sequentially mainly due to the increase in pure PCM content. Furthermore, MPCM-concrete was more stable than PCM-concrete. With the same mass fraction of the composite components, the strength of PCM-concrete was slightly lower than the MPCM-concrete. The temperature regulation test showed that MPCM-concrete and PCM-concrete all had certain temperature regulation performance, which can significantly reduce temperature fluctuation of cement-based building materials around the phase transition temperature. Under the same mass content of the composite components condition, the PCM-concrete had better temperature regulation performance,but its cyclability was poor, and the internal PCM content was gradually lost with the thermal cycles and accompanied by irritant smell, leading to poor practicality of PCM-concrete. Therefore, MPCM-concrete was more suitable for use as a new building material.
引文
[1]申俊锋,邹得球,刘小诗,等.石墨烯复合相变微胶囊悬浮液的对流换热特性[J].化工进展, 2018, 37(6):2323-2330.SHEN J F, ZOU D Q, LIU X S, et al. Convection heat transfer characteristics of graphene-based phase change microcapsule slurries[J]. Chemical Industry and Engineering Progress, 2018, 37(6):2323-2330.
    [2]鲁进利,吕勇军,韩亚芳,等.细小槽道换热器内相变微胶囊悬浮液对流传热DPM模拟[J].过程工程学报, 2018, 18(5):951-956.LU J L, LüY J, HAN Y F, et al. Simulation on convective heat transfer of MPCMS in minichannel heat exchanger based on DPM model[J].The Chinese Journal of Process Engineering, 2018, 18(5):951-956.
    [3]杨春晓,谢德龙,司徒粤,等.相变储能微/纳米胶囊的制备及其在建筑中的应用研究进展[J].化工进展, 2012, 31(9):1998-2005.YANG C X, XIE D L, SITU Y, et al. Preparation of micro/nano encapsulated phase change materials(PCM)and application to building[J]. Chemical Industry and Engineering Progress, 2012, 31(9):1998-2005.
    [4] TUMIRAH K, HUSSEIN M Z, ZULKARNAIN Z, et al. Nanoencapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage[J]. Energy, 2014, 66:881-890.
    [5] LATIBARI S T, MEHRALI M, MEHRALI M, et al. Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method[J]. Energy, 2015, 85:635-644.
    [6] ZHU Y, LIANG S, WANG H, et al. Morphological control and thermal properties of nanoencapsulated n-octadecane phase change material with organosilica shell materials[J]. Energy Conversion&Management,2016, 119:151-162.
    [7]刘丽,王亮,王艺斐,等.基液为丙醇/水的相变微胶囊悬浮液的制备、稳定性及热物性[J].功能材料, 2014, 45(1):1109-1112.LIU L, WANG L, WANG Y F, et al. Test and analysis on the thermal properties of microencapsulated phase change material suspension using propanol/water solution as base fluid[J]. Functional Material,2014, 45(1):1109-1112.
    [8] ZHANG Z L, YUAN Y P, ZHANG N, et al. Experimental investigation on thermophysical properties of capric acidelauric acid phase change slurries for thermal storage system[J]. Energy, 2015, 90:359-368.
    [9] JURKOWSKA M, SZCZYGIEL I. Review on properties of microencapsulated phase change materials slurries(mPCMS)[J].Applied Thermal Engineering, 2016, 98:365-373.
    [10] WANG Y, CHEN Z, LING X. An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels[J]. Applied Thermal Engineering, 2016, 105:209-216.
    [11]林琦,王树刚,王继红,等.球形胶囊内约束熔化过程的LBM模拟[J].化工学报, 2018, 69(6):2373-2379.LIN Q, WANG S G, WANG J H, et al. Numerical simulation of constrained melting inside spherical capsule by lattice Boltzmann method[J]. CIESC Journal, 2018, 69(6):2373-2379.
    [12] VORBECK L, GSCHWANDER S, THIEL P, et al. Pilot application of phase change slurry in a 5m3storage[J]. Applied Energy, 2013, 109:538-543.
    [13] KONG M, ALVARADO J L, THIES C, et al. Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems[J]. Energy, 2017, 122:691-700.
    [14] DIACONU B M, VARGA S, OLIVEIRA A C. Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications[J]. Applied Energy, 2010, 87(2):620-628.
    [15] LIU J, CHEN L L, FANG X M, et al. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors[J]. Solar Energy Materials&Solar Cells, 2017, 159:159-166.
    [16] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable&Sustainable Energy Reviews, 2009, 13(2):318-345.
    [17] TYAGI V V, BUDDHI D. PCM thermal storage in buildings:a state of art[J]. Renewable&Sustainable Energy Reviews, 2007, 11(6):1146-1166.
    [18] LEE S H, SANG J Y, YONG G K, et al. Development of building materials by using micro-encapsulated phase change material[J].Korean Journal of Chemical Engineering, 2007, 24(2):332-335.
    [19] LEANG E, TITTELEIN P, ZALEWSKI L, et al. Numerical study of a composite Trombe solar wall integrating microencapsulated PCM[J].Energy Procedia, 2017, 122:1009-1014.
    [20]?AVIJA B, ZHANG H, SCHLANGEN E. Influence of microencapsulated phase change material(PCM)addition on(micro)mechanical properties of cement paste[J]. Materials, 2017, 10(8):863.
    [21] AGUAYO M, DAS S, MAROLI A, et al. The influence of microencapsulated phase change material(PCM)characteristics on the microstructure and strength of cementitious composites:experiments and finite element simulations[J]. Cement and Concrete Composites,2016, 73:29-41.
    [22]徐子芳,王君,张明旭.纳米级SiO2改性水泥胶砂作用机理研究[J].硅酸盐通报, 2007, 26(1):58-62.XU Z F, WANG J, ZHANG M X. Research on reaction mechanism of cement-motar by nano-SiO2[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(1):58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700