用户名: 密码: 验证码:
颗粒流移动床换热器单元研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Flow in Moving Bed Heat Exchanger Element
  • 作者:郭志罡 ; 杨剑 ; 胡映 ; 王秋旺
  • 英文作者:GUO Zhi-Gang;YANG Jian;HU Ying-Xue;WANG Qiu-Wang;MOE Key Laboratory of Thermal-Fluid Science and Engineering,Xi'an Jiao Tong University;
  • 关键词:颗粒流 ; 双欧拉方法 ; 传热系数
  • 英文关键词:granular flow;;Euler-Euler method;;heat transfer coefficient
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:西安交通大学热流科学与工程教育部重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家十三五重点研发计划项目(No.2017YFB0603500);; 国家自然科学基金重点项目(No.51536007)
  • 语种:中文;
  • 页:GCRB201902024
  • 页数:6
  • CN:02
  • ISSN:11-2091/O4
  • 分类号:167-172
摘要
本文采用双欧拉方法模拟管壁间细粒径颗粒流流动换热,分析颗粒密度、比热容、入口流速、导热系数与颗粒直径对换热的影响。主要结论如下:颗粒与管壁间平均换热系数随颗粒密度,比热容及入口流速增大升高,但热回收效率随之下降。增大导热系数则使换热系数与效率同时增加,但对换热系数的强化效果不如前者。当颗粒直径增大时,气膜热阻会迅速增大,而中央核心区热阻有减少的趋势。故强化换热时,对细粒径颗粒需减少核心区热阻;对大粒径颗粒则需减少气膜热阻。
        Granular flow with heat transfer in moving bed heat exchanger element is numerically simulated by Euler-Euler method in current work. The influence of particles density, special heat capacity, velocity, conductivity and diameter on heat transfer is analyzed. The results show that,average heat transfer coefficient between particles and tube would increase with the increasing of density, special heat capacity, velocity, while the efficiency would decrease. The increasing of conductivity would make heat transfer coefficient and efficiency all increase, but the positive effect on heat transfer coefficient is less. Contact heat resistance would rapidly increase with increasing of diameter, while penetration heat resistance would decrease. In order to enhance heat transfer,penetration heat resistance should be weaken for smaller particles, while contact heat resistance should be weaken for larger particles.
引文
[1] Baumann T, Zunft S, Tamme R. Moving Bed Heat Exchangers for Use With Heat Storage in Concentrating Solar Plants:a Multiphase Model[J]. Heat Transfer Engineering, 2014, 35(3):224-231
    [2] Bartsch P, Baumann T, Zunft S. Granular Flow Field in Moving Bed Heat Exchangers:a Continuous Model Approach[J]. Energy Procedia, 2016, 99:72-79
    [3] Baumann T,Zunft S. Development and Performance As-sessment of a Moving Bed Heat Exchangers for Solar Central Receiver Power Plants[J]. Energy Procedia, 2015, 69:748-757
    [4] Flamant G, Gauthier D, Benoit H, et al. Dense Suspension of Solid Particles as a New Heat Transfer Fluid for Concentrated Solar Thermal Plants:On-sun Proof of Concept[J]. Chemical Engineering Science, 2013, 102:567-576
    [5] Al-Ansary H, El-Leathy A, Al-Suhaibani Z, et al. Experimental Study of a Sand-Air Heat Exchanger for Use With a High-Temperature Solar Gas Turbine System[J]. Journal of Solar Energy Engineering, 2012, 134(4):041017
    [6] Liu J, Yu Q, Peng J, et al. Thermal Energy Recovery from High-Temperature Blast Furnace Slag Particles[J].International Communications in Heat&Mass Transfer,2015, 69:23-28
    [7]郑斌,刘永启,李瑞阳,等.高温煅烧石油焦排料过程余热回收.化工进展,2015, 34(6):1539-1543ZHENG Bin, LIU Yong-qi, LI Rui-yang, et al. Experimental Investigation on Waste Heat Reutilization of Calcined Petroleum Coke[J]. Chemical Industry and Engineering Progress 2015,34(6):1539-1543
    [8]杨凌.粉体流流动及传热参数耦合特性研究[D].大连理工大学,2007YANG Ling. Study on Coupling Characteristics of Particulate flow and Heat Transfer Parameters[D]. Dalian University of Technology, 2007
    [9] Hou Q F, Zhou Z Y, Yu A B. Gas-solid flow and Heat Transfer in Fluidized Beds With Tubes:Effects of Material Properties and Tube Array Settings[J]. Powder Technology, 2016, 296:59-71
    [10]吴浩,杨星团,桂南,等.球床中传热与流动数值模拟研究[J].热科学与技术,2016, 15(1):26-32WU Hao, YANG Xin-Tuan, Gui nan, et al. Numerical Simulation Research on Heat Transfer and Fluid Flow for Pebble Beds[J]. Journal of Thermal Science and Technology 2016, 15(1):26-32
    [11] Wu H, Gui N, Yang X, et al. Effect of Scale on the Modeling of Radiation Heat Transfer in Packed Pebble Beds[J]. International Journal of Heat&Mass Transfer, 2016,101:562-569
    [12] Schl(u|¨)nder E U. Heat Transfer to Packed and Stirred Beds from the Surface of Immersed Bodies[J]. Chemical Engineering&Processing, 1984,18(1):31-53
    [13] Srivastava A, Sundaresan S. Analysis of a FrictionalKinetic Model for Gas-Particle Flow[J]. Powder Technology, 2003,129(1-3):72-85
    [14]周强.基于离散元方法的颗粒材料热传导研究[D].大连理工大学,2011ZHOU Qiang. Study on Particles material Conduction Through Discrete Element Method[D]. Dalian University of Technology, 2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700