用户名: 密码: 验证码:
大单元双块式无砟轨道路桥过渡段路基上拱影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Influence of Subgrade Arching of Long-unit Double-block Ballastless Track in Bridge-roadbed Transition Zone
  • 作者:赵磊
  • 英文作者:ZHAO Lei;Railway Engineering Research Institute,China Academy of Railway Sciences Corporation Limited;
  • 关键词:高速铁路 ; 无砟轨道 ; 路桥过渡段 ; 路基上拱 ; 层间离缝
  • 英文关键词:high-speed railway;;ballastless track;;roadbed-bridge transition;;subgrade arching;;interlayer separation
  • 中文刊名:TDXB
  • 英文刊名:Journal of the China Railway Society
  • 机构:中国铁道科学研究院集团有限公司铁道建筑研究所;
  • 出版日期:2018-10-15
  • 出版单位:铁道学报
  • 年:2018
  • 期:v.40;No.252
  • 基金:中国铁路总公司科技研究开发计划(2017G010-B,Z2017-G003);; 中国铁道科学研究院科研项目(2016YJ023)
  • 语种:中文;
  • 页:TDXB201810018
  • 页数:8
  • CN:10
  • ISSN:11-2104/U
  • 分类号:131-138
摘要
路桥过渡段路基上拱会引起相邻桥上扣件上拔,导致道床板空吊,产生静、动态不平顺。车辆高速通过时,静、动态不平顺的存在会对行车安全性及舒适性产生影响。本文通过建立路桥过渡段车辆、轨道、桥梁、路基耦合静动态分析模型对上拱静态不平顺及其引起的动力响应进行评估。评估结果表明:路基侧上拱量大于2 mm后桥梁侧道床板下开始产生离缝,离缝随着路基侧上拱量增加呈线性增长趋势,桥梁侧扣件受拉明显;路基侧上拱量5 mm时速度350 km/h情况下车体垂向加速度达到规范限值,轮重减载率达到0. 53;上拱量10 mm时速度大于150 km/h以后车体垂向加速度超标,速度超过250 km/h以后轮重减载率超标;离缝量达到10 mm时,桥梁侧扣件在行车过程中动态受拉明显,最大动态拉力达到42. 2 kN。
        The subgrade arching of the roadbed-bridge transition zone will cause the uplifting of the fasteners on the adjacent bridge,leading to track slab hanging and static and dynamic irregularity. The existence of static and dynamic irregularities will affect the running safety and comfort of the vehicle travelling at high speed. In this paper,a static and a dynamic analysis model coupling vehicle,track,bridge and roadbed was built,to estimate the static irregularity caused by the subgrade arching and its dynamic influence. The results show that when the subgrade arching is larger than 2 mm,the gap under the track slab begins to develop,which increases linearly with the increase of the subgrade arching. The fasteners on the adjacent bridge are uplifted obviously. At 5 mm of the subgrade arching,the vertical acceleration of the car body reaches the standard limit when the vehicle speed reaches 350 km/h. At this point,the wheel load reduction rate reaches 0. 53. At 10 mm of the subgrade arching,the vertical acceleration of the car body reaches the standard limit when the vehicle speed reaches 150 km/h. The wheel load reduction rate reaches the standard limit when the vehicle speed reaches 250 km/h. When the subgrade arching is 10 mm,the fasteners on the adjacent bridge bear significant dynamic uplifting force,with the maximum dynamic uplifting force of 42. 2 kN.
引文
[1]邓非凡,丁晨旭,苏成光,等.兰新铁路第二双线大单元双块式无砟轨道温度效应理论分析[J].铁道建筑,2016(5):53-57.DENG Feifan,DING Chenxu,SU Chengguang,et al. Theoretical Analysis on Temperature Effect of Large Unit Double-block Ballastless Track for Lanzhou-Xinjiang Second Double-track Railway[J]. Railway Engineering,2016(5):53-57.
    [2]韦有信,周建,李成辉,等.兰新二线6. 5 m单元双块式无砟轨道适应性分析[J].铁道学报,2014,36(8):70-74.WEI Youxin,ZHOU Jian,LI Chenghui,et al. Study on Adaptability of 6. 5 m Double-block Ballastless Track to Double Lanzhou-Xinjiang Railway Line[J]. Journal of the China Railway Society,2014,36(8):70-74.
    [3]马丽娜,严松宏,王起才,等.哈密地区膨胀性泥岩膨胀特性研究[J].兰州交通大学学报,2015,34(1):17-22.MA Lina,YAN Songhong,WANG Qicai,et al. Research on the Characteristics of Expansive Mudstone in Kumul Prefecture[J]. Journal of Lanzhou Jiaotong University,2015,34(1):17-22.
    [4]谭冬生,孙毅敏,胡力学,等.新建兰新铁路新疆段沿线盐渍土盐胀特性、机理与防治对策[J].铁道学报,2011,33(9):83-88.TAN Dongsheng,SUN Yimin,HU Lixue,et al. Salt Expansion Properties and Mechanism of Saline Soil in Xinjiang Section of Lanzhou-Xinjiang Railway and Preventive Mea-sures[J]. Journal of the China Railway Society,2011,33(9):83-88.
    [5]薛彦瑾,王起才,张戎令,等.荷载条件下原状膨胀土浸水膨胀变形试验研究[J].铁道建筑,2017(2):79-82.XUE Yanjin,WANG Qicai,ZHANG Rongling,et al. Experimental Study on Moistening Expansive Deformation of Undisturbed Expansive Soil under Loading[J]. Railway Engineering,2017(2):79-82.
    [6]薛彦瑾,王起才,张戎令,等.高速铁路地基膨胀土膨胀变形试验研究[J].铁道科学与工程学报,2017,14(4):690-696.XUE Yanjin,WANG Qicai,ZHANG Rongling,et al. Experimental Study on Expansive Deformation of Expansive Soil in High Speed Railway[J]. Journal of Railway Science and Engineering,2017,14(4):690-696.
    [7]王剑.兰新高速铁路路基上拱原因分析及整治措施[J].路基工程,2015(1):205-209.WANG Jian. Cause Analysis on Subgrade Arching of LanzhouXinjiang High-speed Railway and the Control Measures[J].Subgrade Engineering,2015(1):205-209.
    [8]程康,杨有海,马治国,等.兰新高铁玉门段路基泥岩膨胀病害治理研究[J].兰州工业学院学报,2017,24(3):50-53.CHENG Kang,YANG Youhai,MA Zhiguo,et al. The Study on Disease Control Resulting From Expansion of Mudstones&Subgrade in Yumen Section of Lanzhou-Xinjiang High-speed Railway[J]. Journal of Lanzhou Institute of Technology,2017,24(3):50-53.
    [9]罗强.高速铁路路桥过渡段动力学特性分析及工程试验研究[D].成都:西南交通大学,2003.
    [10]蔡成标,翟婉明,赵铁军,等.列车通过路桥过渡段时的动力作用研究[J].交通运输工程学报,2001,1(1):17-19.CAI Chengbiao,ZHAI Wanming,ZHAO Tiejun,et al. Research on Dynamic Interaction of Train and Track on Roadbed-bridge Transition Section[J]. Journal of Traffic and Transportation Engineering,2001,1(1):17-19.
    [11]韩义涛,姚力.基础沉降对土路基上板式轨道动力性能影响分析[J].铁道工程学报,2007,24(10):28-31.HAN Yitao,YAO Li. Analysis of the Dynamic Perfor-mance for Slab Track Settlement on Embankment[J]. Journal of Railway Engineering Society,2007,24(10):28-31.
    [12]陈虎.高速铁路无砟轨道路堤地基差异沉降传递规律及过渡段动力学试验研究[D].成都:西南交通大学,2013.
    [13]王崇涛.路桥过渡段差异沉降与动力响应研究[D].西安:长安大学,2010.
    [14]张小会,周顺华,宫全美,等.路基不均匀沉降对车辆和轨道动力响应的影响[J].同济大学学报(自然科学版),2015,43(8):1187-1193.ZHANG Xiaohui,ZHOU Shunhua,GONG Quanmei,et al.Effect of Subgrade Differential Settlement on Dynamic Response of Vehicle and Slab Track Vertical Coupled System[J]. Journal of Tongji University(Natural Science),2015,43(8):1187-1193.
    [15]蔡小培,单文娣,魏金彩.高速铁路路基不均匀沉降的动力学识别[J].北京交通大学学报,2014,38(1):49-54.CAI Xiaopei,SHAN Wendi,WEI Jincai. Dynamic Recognition Method of Subgrade Differential Settlement on High-speed Railway[J]. Journal of Beijing Jiaotong University,2014,38(1):49-54.
    [16]翟婉明.车辆-轨道耦合动力学[M].北京:科学出版社,2007.
    [17]樊令举.高速动车组转向架动力学性能仿真分析与对比[D].大连:大连交通大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700