用户名: 密码: 验证码:
交流XLPE电缆在两种直流运行方式下的热电耦合仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermo-electric Coupling Simulation for AC XLPE Cable in Two DC Operation Modes
  • 作者:胡列 ; 许烽 ; 裘鹏 ; 于竞哲 ; 邱海锋 ; 何川
  • 英文作者:HU Liexiang;XU Feng;QIU Peng;YU Jingzhe;QIU Haifeng;HE Chuan;State Grid Zhejiang Electric Power Corporation;State Grid Zhejiang Electric Power Corporation Research Institute;College of Electrical Engineering,Zhejiang University;State Grid Hangzhou Xiaoshan Power Supply Company;State Grid Anhui Electric Power Corporation;
  • 关键词:XLPE电缆 ; 交改直 ; 有限元法 ; 电场 ; 温度场 ; 耦合仿真 ; 三线双极结构
  • 英文关键词:XLPE cable;;AC to DC;;finite element method;;electric field;;temperature field;;coupling simulation;;three-wire bipolar structure
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:国网浙江省电力公司;国网浙江省电力公司电力科学研究院;浙江大学电气工程学院;国网浙江杭州市萧山区供电公司;国网安徽省电力公司;
  • 出版日期:2018-08-09 09:44
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.320
  • 基金:国网浙江省电力公司科技项目(5211DS15002W)~~
  • 语种:中文;
  • 页:GDYJ201907034
  • 页数:7
  • CN:07
  • ISSN:42-1239/TM
  • 分类号:298-304
摘要
对交流电缆线路进行直流改造时,研究电缆在不同直流拓扑结构下的运行参数对于有效利用原有线路的供电能力具有重要意义。以35 kV和66 kV电压等级交流交联聚乙烯(XLPE)电缆为例,通过所建立的有限元仿真模型对在双极式直流和三线双极式直流两种拓扑结构下运行的电缆进行了热电耦合仿真分析。对于所选35 kV和66kV电缆,为避免空间电荷效应,将其改为两种直流运行方式后,其运行电压取值范围分别为±25~±40kV和±40~±65 kV。同时,随着交流电压等级的升高,交流电缆改为直流运行后的最大输送功率提升倍数逐渐降低。所得结论可为相关工程提供一定参考。
        When alternating current(AC) cable distribution lines are transformed into direct current(DC) lines, studying the operating parameters of cables under different DC topological structures is of great importance for the effective utilization of the power supply capacity of the existing lines. By using the finite element analysis software ANSYS for the typical XLPE cable widely used in 35 kV and 66 kV AC grid, we developed a simulation model for temperature and the electric field coupling. The temperature field and the electric field were simulated for the cables in different DC operation modes.To avoid the effect of the space charge, the DC voltage ranges of the selected 35 kV and 66 kV cables are ±25~±40 kV and ±40~±65 kV in the two DC operation modes, respectively. For the AC cables in DC operation, as the AC voltage level increases, the ratio of maximum transmission power after and before reconstruction gradually decreases. The conclusions in this paper can provide some references for the related engineering.
引文
[1]杜翼,江道灼,尹瑞,等.直流配电网拓扑结构及控制策略[J].电力自动化设备,2015,35(1):139-145.DU Yi,JIANG Daozhuo,YIN Rui,et al.Topological structure and control strategy of DC distribution network[J].Electric Power Automation Equipment,2015,35(1):139-145.
    [2]江道灼,郑欢.直流配电网研究现状与展望[J].电力系统自动化,2012,36(8):98-104.JIANG Daozhuo,ZHENG Huan.Research status and developing prospect of DC distribution network[J].Automation of Electric Power Systems,2012,36(8):98-104.
    [3]何秋萍,韩永霞,赵宇明,等.±10 kV直流配电系统过电压与绝缘配合[J].南方电网技术,2016,10(4):16-22.HE Qiuping,HAN Yongxia,ZHAO Yuming,et al.Overvoltage and insulation coordination of±10 kV DC distribution system[J].Southern Power System Technology,2016,10(4):16-22.
    [4]刘自发,韦涛,李梦渔,等.基于改进层次分析法的交、直流微电网综合评估[J].电力自动化设备,2016,36(3):60-66.LIU Zifa,WEI Tao,LI Mengyu,et al.Comprehensive evaluation based on improved analytic hierarchy process for AC/DC microgrid[J].Electric Power Automation Equipment,2016,36(3):60-66.
    [5]刘一琦,王建赜,傅裕,等.直流微电网中不同网络结构的负荷功率分配精度研究[J].电力自动化设备,2016,36(3):53-59.LIU Yiqi,WANG Jianze,FU Yu,et al.Load power sharing accuracy for different network configurations of DC microgrid[J].Electric Power Automation Equipment,2016,36(3):53-59.
    [6]周稳,戴瑜兴,毕大强,等.交直流混合微电网协同控制策略[J].电力自动化设备,2015,35(10):51-57.ZHOU Wen,DAI Yuxing,BI Daqiang,et al.Coordinative control strategy for hybrid AC-DC microgrid[J].Electric Power Automation Equipment,2015,35(10):51-57.
    [7]刘英,曹晓珑,何子兰,等.现役交流XLPE电缆配电线路改为直流运行的技术方案及实例分析[J].中国电机工程学报,2016,36(1):96-103.LIU Ying,CAO Xiaolong,HE Zilan,et al.Technical scheme and case study of the uprating renovation of existing XLPE cables from AC distribution system to DC operation[J].Proceedings of the CSEE,2016,36(1):96-103.
    [8]YU J,SMITH K,URIZARBARRENA M,et al.Initial designs for the ANGLE DC project:converting existing AC cable and overhead line into DC operation[C]∥13th IET International Conference on AC and DC Power Transmission.Manchester,UK:IET,2017:1-6.
    [9]许烽,徐政.一种适用于交流线路改造成直流的扩展式双极直流输电结构[J].中国电机工程学报,2014,34(33):5827-5835.XU Feng,XU Zheng.An extended bipole HVDC structure with three wires for conversion of AC lines to HVDC[J].Proceedings of the CSEE,2014,34(33):5827-5835.
    [10]徐政,许烽.输电线路交改直的关键技术研究[J].高电压技术,2016,42(1):1-10.XU Zheng,XU Feng.Research on key technologies of AC-to-DCtransmission lines conversion[J].High Voltage Engineering,2016,42(1):1-10.
    [11]谢月,刘刚,李歆蔚,等.电缆运行老化过程对其空间电荷行为的影响[J].高电压技术,2017,43(5):1693-1699.XIE Yue,LIU Gang,LI Xinwei,et al.Influence of cable operation-aging on its space charge behavior[J].High Voltage Engineering,2017,43(5):1693-1699.
    [12]杨黎明,朱智恩,杨荣凯,等.柔性直流电缆绝缘料及电缆结构设[J].电力系统自动化,2013,37(15):117-124.YANG Liming,ZHU Zhi’en,YANG Rongkai,et al.Insulation material and structure design of HVDC flexible cables[J].Automation of Electric Power Systems,2013,37(15):117-124.
    [13]王亚,吕泽鹏,吴锴,等.高压直流XLPE电缆研究现状[J].绝缘材料,2014,47(1):22-25.WANG Ya,LüZepeng,WU Kai,et al.Space charge characteristics of high voltage retired cable[J].Insulating Materials,2014,47(1):22-25.
    [14]郑飞虎,张冶文,肖春.聚合物电介质的击穿与空间电荷的关系[J].材料科学与工程学报,2006,24(2):316-320.ZHENG Feihu,ZHANG Yewen,XIAO Chun.Relationship between breakdown in polymer dielectrics and space charge[J].Journal of Materials Science Engineering,2006,24(2):316-320.
    [15]刘通,傅明利,侯帅,等.温度梯度影响高压直流电缆用交联聚乙烯中空间电荷分布的作用机理[J].高电压技术,2015,41(8):2665-2673.LIU Tong,FU Mingli,HOU Shuai,et al.Mechanism of space charge distribution in XLPE used in HVDC cables under temperature gradient[J].High Voltage Engineering,2015,41(8):2665-2673.
    [16]刘刚,谢月,杨婉琪,等.高压退役电缆空间电荷特性[J].高电压技术,2016,42(11):3607-3615.LIU Gang,XIE Yue,YANG Wanqi,et al.Space charge characteristics of high voltage retired cable[J].High Voltage Engineering,2016,42(11):3607-3615.
    [17]FABIANI D,MONTANARI G C,LAURENT C,et al.Polymeric HVDC cable design and space charge accumulation.part 1:insulation/semicon interface[J].IEEE Electrical Insulation Magazine,2007,23(6):11-19.
    [18]FABIANI D,MONTANARI G C,LAURENT C,et al.HVDC cable design and space charge accumulation.part 3:effect of temperature gradient[J].IEEE Electrical Insulation Magazine,2008,24(2):5-14.
    [19]TSEKMES I A,BORN D V D,MORSHUIS P H F,et al.Space charge accumulation in polymeric DC mini-cables[C]∥IEEE International Conference on Solid Dielectrics.Bologna,Italy:IEEE,2013:452-455.
    [20]DELPINO S,FABIANI D,MONTANARI G C,et al.Feature article-polymeric HVDC cable design and space charge accumulation.part 2:insulation interfaces[J].Electrical Insulation Magazine IEEE,2008,24(1):14-24.
    [21]钟琼霞,兰莉,吴建东,等.交联副产物对交联聚乙烯中空间电荷行为的影响[J].中国电机工程学报,2015,35(11):2903-2910.ZHONG Qiongxia,LAN Li,WU Jiandong,et al.The influence of cross-linked by-products on space charge behavior in XLPE[J].Proceedings of the CSEE,2015,35(11):2903-2910.
    [22]HJERRILD J,BOGGS S,HOLBOLL J,et al.DC-field in solid dielectric cables under transient thermal conditions[C]∥2001 IEEE 7th International Conference on Solid Dielectrics.Eindhoven,Netherlands:IEEE,2001:58-61.
    [23]刘士利,李丛健,沈方,等.交流XLPE电缆改为直流运行时空间电荷积累特性仿真[J].高电压技术,2017,43(11):3576-3582.LIU Shili,LI Congjian,SHEN Fang,et al.Simulation on the characteristics of space charge accumulation when converting the AC XLPEcable to DC operation[J].High Voltage Engineering,2017,43(11):3576-3582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700