用户名: 密码: 验证码:
基于g-C_3N_4-CeO_2复合材料的电化学生物传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bioelectrochemical Sensor Based on g-C_3N_4-CeO_2 Composites
  • 作者:李晓琴 ; 刘雅杰 ; 曹秀芝 ; 王娟 ; 姚慧
  • 英文作者:LI Xiao-qin;LIU Ya-jie;CAO Xiu-zhi;WANG Juan;YAO Hui;Shenyang University of Chemical Technology;
  • 关键词:g-C3N4-CeO2复合材料 ; 过氧化氢 ; 修饰电极 ; 酶传感器
  • 英文关键词:g-C3N4-CeO2 composites material;;H2O2;;modified electrode;;enzyme sensor
  • 中文刊名:SYHY
  • 英文刊名:Journal of Shenyang University of Chemical Technology
  • 机构:沈阳化工大学应用化学学院;
  • 出版日期:2018-12-13
  • 出版单位:沈阳化工大学学报
  • 年:2018
  • 期:v.32;No.127
  • 基金:辽宁省博士启动基金项目(201501077);; 沈阳化工大学博士启动基金资助项目(20063209)
  • 语种:中文;
  • 页:SYHY201804005
  • 页数:8
  • CN:04
  • ISSN:21-1577/TQ
  • 分类号:24-31
摘要
分别采用高温煅烧法和水热合成法制备g-C_3N_4材料和g-C_3N_4-CeO_2复合材料.采用傅里叶红外光谱仪(FTIR),X-射线衍射(XRD)和扫描电镜(SEM)对材料进行表征.将g-C_3N_4-CeO_2和辣根过氧化物酶(HRP)混合修饰于玻碳电极表面后,再进行电化学聚合氯金酸,构建一种新型的用于检测过氧化氢(H_2O_2)的电化学Au/g-C_3N_4-CeO_2-HRP/GCE生物传感器.实验结果表明:该传感器对H_2O_2有较好的催化响应,在H_2O_2浓度1. 0×10-5~4. 6×10-3mol/L的范围内该传感器的响应电流与浓度呈现良好的线性关系,检出限为2. 6μmol/L(S/N=3).该传感器还应用于对实际水样的检测,其加标回收率为98. 4%~101. 2%.因此,g-C_3N_4-CeO_2复合材料在电化学传感器方面有着潜在的应用前景.
        G-C_3N_4 and g-C_3N_4-CeO_2 composite materials were successfully prepared by calcined and hydrothermal synthesis method. Materials were characterized by Fourier transform infrared spectroscopy( FTIR),X-ray diffraction( XRD) and Scanning electron microscopy( SEM). Before electropolymerizating Au,g-C_3N_4-CeO_2 composites material was modified onto the surface of a glass carbon electrode with horseradish peroxidase( HRP). A novel electrochemical biosensor for H_2O_2 was constructed by Au/gC_3N_4-CeO_2-HRP/GCE. The modified electrode displayed a good electrocatalytic activity towards H_2O_2.Under optimized conditions,the linear response of the biosensor to H_2O_2 ranged from 1. 0 × 10-5 to 4. 6 ×10-3 mol/L,with a detection limit of 2. 6 μmol/L( S/N = 3). Satisfactory detection results in real water sample were obtained by this biosensor,and the recovery rates were between 98. 4 % ~ 101. 2 %. Thus,the g-C_3N_4-CeO_2 composites material has great potential for applications in electrochemical biosensors.
引文
[1] JIN R R,LI L F,LIAN Y H,et al. Layered Double Hydroxide Supported Prussian Blue Nanocomposites for Electrocatalytic Reduction of H2O2[J]. Analytical M ethods,2012,4(9):2704-2710.
    [2] YUE H,HE J,XIAO D,et al. Biosensor for Determination of Hydrogen Peroxide based on Yucca Filamentosa M embrane[J]. Anal. M ethods,2013,5(20):5437-5443.
    [3] ENSAFI A A,JAFARI-ASL M,DOROSTKAR N,et al. The Fabrication and Characterization of CuNanoparticle Immobilization on a Hybrid Chitosan Derivative-Carbon Support as a Novel Electrochemical Sensor:Application for the Sensitive Enzymeless Oxidation of Glucose and Reduction of Hydrogen Peroxide[J]. J. M ater. Chem. B,2014,2(6):706-717.
    [4] L C J,DI W H,LIU Z H,et al. Luminescent CePO4:Tb Colloids for H2O2and Glucose Sensing[J]. Analyst,2014,139(18):4547-4555.
    [5] WANG Z H,LIU F,TENG X,et al. Detection of Hydrogen Peroxide in Rainw ater Based on M g-AlCarbonate Layered Double Hydroxides-Catalyzed Luminol Chemiluminescence[J]. Analyst,2011,136(23):4986-4990.
    [6] HUAN Y F,FEI Q,SHAN H Y,et al. A Novel Water-Soluble Sulfonated Porphyrin Fluorescence Sensor for Sensitive Assays of H2O2and Glucose[J].Analyst,2015,140(5):1655-1661.
    [7] XU D,LI L,DING Y P,et al. Electrochemical Hydrogen Peroxide Sensors Based on Electrospun La0. 7Sr0. 3M n0. 75Co0. 25O3Nanofiber M odified Electrodes[J]. Anal. M ethods,2015,7(15):6083-6088.
    [8] LUO J,CHEN Y Z,MA Q,et al. Layer-by-Layer Assembled Ionic-Liquid Functionalized GraphenePolyaniline Nanocomposite w ith Enhanced Electrochemical Sensing Properties[J]. J. M ater. Chem. C,2014,2(24):4818-4827.
    [9]陈苏靖,李芳芳,钟云秀,等.基于聚溴酚蓝-石墨烯复合膜修饰电极的多巴胺电化学传感器[J].分析测试学报,2015,34(9):1066-1071.
    [10]傅贤明,刘智晶,蔡淑贤,等.基于DNA银铂双金属纳米簇的电化学传感器用于Hg2+的检测[J].分析测试学报,2016,35(4):426-431.
    [11] WANG D H,PAN J N,LI H H,et al. A Pure Organic Heterostructure ofμ-oxo Dimeric Iron(Ⅲ)Porphyrin and Graphitic-C3N4for Solar H2Roduction from Water[J]. J. M ater. Chem. A,2016,4(1):290-296.
    [12] ZHAO H,DONG Y M,JIANG P P,et al. In Situ Light-Assisted Preparation of M oS2on Graphitic C3N4Nanosheets for Enhanced Photocatalytic H2Production from Water[J]. J. M ater. Chem. A,2015,3(14):7375-7381.
    [13] REZA GHOLIPOUR M,DINH C T,BELAND F,et al. Nanocomposite Heterojunctions as Sunlight-Driven Photocatalysts for Hydrogen Production from Water Splitting[J]. Nanoscale,2015,7(18):8187-8208.
    [14] XU H,SONG Y X,SONG Y H,et al. Synthesis and Characterization of G-C3N4/Ag2CO3w ith Enhanced Visible-Light Photocatalytic Activity for the Degradation of Organic Pollutants[J]. RSC Advances,2014,4(65):34539-34547.
    [15] DI J,XIA J X,YIN S,et al. Preparation of SphereLike g-C3N4/BiOI Photocatalysts via a Reactable Ionic Liquid for Visible-Light-Driven Photocatalytic Degradation of Pollutants[J]. J. M ater. Chem. A,2014,2(15):5340-5351.
    [16] LIU H,JIN Z T,XU Z Z. Hybridization of Cd0. 2Zn0. 8S w ith g-C3N4Nanosheets:a VisibleLight-Driven Photocatalyst for H2Evolution from Water and Degradation of Organic Pollutants[J].Dalton Trans,2015,44(32):14368-14375.
    [17] FU X M,GU Z C,LU Q Y,et al. A Solid-State Electrochemiluminescent Sensor Based on C60/Graphite-Like Carbon Nitride Nanosheet Hybrids for Detecting M elamine[J]. RSC Advances,2016,6(16):13217-13223.
    [18] SHE X J,XU H,XU Y G,et al. Exfoliated Graphene-Like Carbon Nitride in Organic Solvents:Enhanced Photocatalytic Activity and Highly Selective and Sensitive Sensor for the Detection of Trace Amounts of Cu2+[J]. J. Mater. Chem. A,2014,2(8):2563-2570.
    [19] ZHENG X L,HUA X X,QIAO X Y,et al. Simple and Signal-Off Electrochemiluminescence Immunosensor for Alpha Fetoprotein Based on Gold Nanoparticle-M odified Graphite-Like Carbon Nitride Nanosheet Nanohybrids[J]. RSC Advances,2016,6(26):21308-21316.
    [20]唐跃,张伟德.石墨相氮化碳的制备及其在检测重金属离子Cd(Ⅱ)中的应用[J].分析测试学报,2013,32(12):1443-1447.
    [21]黄素珍,康天放,鲁理平.检测硝基苯的类石墨氮化碳修饰电化学传感器研究[J].分析测试学报,2016,35(1):48-53.
    [22] SHE X J,XU H,WANG H F,et al. Controllable Synthesis of CeO2/g-C3N4Composites and Their Applications in the Environment[J]. Dalton Trans,2015,44(15):7021-7031.
    [23] ZHOU H P,XI J Y,LI Z H,et al. CeO2Decorated Graphite Felt as a High-Performance Electrode for Vanadium Redox Flow Batteries[J]. RSC Advances,2014,4(106):61912-61918.
    [24] RADHAKRISHNAN S,KIM S J. An Enzymatic Biosensor for Hydrogen Peroxide Based on One-Pot Preparation of CeO2-Reduced Graphene Oxide Nanocomposite[J]. RSC Advances,2015,5(17):12937-12943.
    [25]马晓倩,孙卓,燕萍,等.基于Gd掺杂Ce纳米材料的制备及其电化学应用[J].分析测试学报,2015,34(2):153-158.
    [26] JIANG D L,ZHANG Y,CHU H Y,et al. N-Doped Graphene Quantum Dots as an Effective Photocatalyst for the Photochemical Synthesis of Silver Deposited Porous Graphitic C3N4Nanocomposites for Nonenzymatic Electrochemical H2O2Sensing[J].RSC Advances,2014,4(31):16163-16171.
    [27]杭祖圣,陆炎,黄玉安,等.低光照强度下氧化石墨烯-g-C3N4/PVDF膜的光催化降解性能研究[J].科学技术与工程,2015,15(16):1-6.
    [28]董海军,陈爱平,何洪波,等.溶剂热法制备TiO2/g-C3N4及其光催化性能[J].华东理工大学学报(自然科学版),2013,39(5):536-541.
    [29]赵晓兵,张作松,李霞章,等. g-C3N4-CeO2/ATP复合材料的制备及可见光催化性能[J].硅酸盐学报,2015,43(11):1650-1655.
    [30] HOSSEINI H,AHMAR H,DEHGHANI A,et al.Au-SH-SiO2Nanoparticles Supported on M etal-Organic Framew ork(Au-SH-SiO2@Cu-M OF)as a Sensor for Electrocatalytic Oxidation and Determination of Hydrazine[J]. Electrochimica Acta,2013,88:301-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700