用户名: 密码: 验证码:
流化催化裂化(FCC)催化剂跑损机制及故障树分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanisms and fault tree analysis of catalyst loss in fluid catalytic cracking(FCC) unit
  • 作者:王迪 ; 孙立强 ; 严超宇 ; 魏耀东
  • 英文作者:WANG Di;SUN Liqiang;YAN Chaoyu;WEI Yaodong;State Key Laboratory of Heavy Oil Processing , China University of Petroleum;Beijing Key Laboratory of Process Fluid Filtration and Separation;Faulty of Engineering, China University of Petroleum-Beijing at Karamay;
  • 关键词:流化催化裂化装置 ; 故障树分析方法 ; 催化剂跑损 ; 预防措施
  • 英文关键词:fluid catalytic cracking(FCC) unit;;fault tree analysis(FTA);;catalyst loss;;preventive measures
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国石油大学(北京)重质油国家重点实验室;过程流体过滤与分离技术北京市重点实验室;中国石油大学(北京)克拉玛依校区工学院;
  • 出版日期:2019-05-05 11:36
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:国家自然科学基金(21776305);; 中国石油大学(北京)克拉玛依校区科研启动基金(RCYJ2016B-02-002)
  • 语种:中文;
  • 页:HGJZ201908005
  • 页数:6
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:43-48
摘要
炼油厂中流化催化裂化(FCC)装置催化剂跑损的故障原因分析多数来自现场工程师,在故障机理方面少有报道。为了解决这一问题,本文利用故障树分析方法 (FTA),研究FCC装置催化剂跑损机制。采用催化剂跑损为顶事件,结合跑损途径和跑损机理,确定FCC装置故障、操作工艺异常和催化剂颗粒物性3个因素作为中间事件,并通过逐层向下深入分析,确定诸如翼阀磨损等21个因素作为底事件,建立催化剂跑损故障树模型。根据FCC装置故障树风险分析,得到任何一个底事件出现都有可能导致顶事件发生,且对FCC装置催化剂跑损的贡献度相同。研究结果表明:利用FTA方法可以更深层次了解装置跑剂原因,对考察FCC装置催化剂跑损机理具有指导意义,并提出了相应的故障判定流程和跑剂预防措施。
        Fault analysis of catalyst loss in fluid catalytic cracking(FCC) unit of refinery mostly comes from technicians and field engineers, and there are few reports on fault mechanism. In order to solve this problem, fault tree analysis(FTA) method was used to investigate the mechanism of catalyst loss in FCC unit. Catalyst loss was determined to be top event. FCC unit failure, abnormal operation process and physical properties of catalysts were identified as the intermediate events by combining the pathway and mechanisms of catalyst loss. 21 factors such as flutter valve wear were identified as the bottom events through in-depth analysis step by step. The fault tree model of catalyst loss was established. According to the fault tree risk analysis of FCC unite, it is concluded that any bottom event may lead to top event, and the contribution degree of any of these factors to catalyst loss of FCC unite is the same. The results showed that, FTA method can be used to further understand the causes of catalyst loss in FCC unit, which has guiding significance for investigating the mechanism of catalyst loss in FCC unit. At the same time, the corresponding process of fault determination and the preventive measures of catalyst loss were put forward.
引文
[1]陈俊武,许友好.催化裂化工艺与工程[M]. 3版.北京:中国石化出版社, 2015:40-49.CHEN J W, XU Y H. Catalytic cracking technology and engineering[M]. 3rd ed. Beijing:China Petro Chemical Press, 2015:40-49.
    [2]李鹏,郑晓军,明梁.大数据技术在催化裂化装置运行分析中的应用[J].化工进展, 2016, 35(3):665-670.LI P, ZHENG X J, MING L. Application of big data technology in operation analysis of catalytic cracking[J]. Chemical Industry and Engineering Progress, 2016, 35(3):665-670.
    [3]靳满满,田文德,张俊梅. FCCU反再系统异常工况的安全分析[J].化工学报, 2015, 66(9):3649-3653.JING M M, TIAN W D, ZHANG J M. Safety analysis of FCCU reaction-regeneration system under abnormal conditions[J]. CIESC Jorunal, 2015, 66(9):3649-3653.
    [4]赵继昌,史运贞,唐亚勇.旋风分离器升气筒穿孔与FCC油浆固含量超标[J].炼油技术与工程, 2008, 38(1):23-25.ZHAO J C, SHI Y Z, TANG Y Y. Failure of cyclone riser and offspecification of solids in FCCU slurry[J]. Petroleum Refinery Engineering, 2008, 38(1):23-25.
    [5]申健,周复昌,于萍,等.流化催化裂化装置烟机结垢原因分析[J].石油炼制与化工, 2014, 45(2):13-17.SHEN J, ZHOU F C, YU P, et al. Studies on fouling of flue gas turbine in FCCU[J]. Petroleum Processing and Petrochemicals, 2014, 45(2):13-17.
    [6]崔国居.重油催化裂化装置催化剂跑损原因分析[J].工业催化,2003(8):27-29.CUI G J. Investigation on the causes for abnormal loss of FCC catalyst in RFCC Unit[J]. Industrial Catalysis, 2003(8):27-29.
    [7]程久联,郝永杰.催化裂化VQS改造探讨[J].炼油技术与工程,2013, 43(2):39-41.CHENG J L, HAO Y J. Discussion on technical revamp of FCC VQS[J]. Petroleum Refinery Engineering, 2013, 43(2):39-41.
    [8] NICCUM P K. 20 Questions:identify probable causes for high catalyst loss[J]. Hydrocarbon Processing, 2010, 9:29-38.
    [9]蔡香丽,黄蕾,乔伟,等. FCCU旋风分离器壳体断裂失效的原因分析[J].炼油技术与工程, 2014, 44(9):28-31.CAI X L, HUANG L, QIAO W, et al. Analysis of cracking failure of shell of FCCU cyclone separator[J]. Petroleum Refinery Engineering,2014, 44(9):28-31.
    [10] HUNT D A, KRISHNAIAH G. Optimizing FCC regenerator can minimize catalyst losses[J]. Oil&Gas Journal, 2001, 3:56-61.
    [11] ZHENG M B, CHENG G H, HAN J. Failure analysis on two austenitic stainless steels applied in cyclone separators of catalytic cracking unit[J]. Engineering Failure Analysis, 2011, 18:88-96.
    [12] MCLEAN J B. FCC catalyst properties can affect cyclone erosion[J].Oil&Gas Journal, 2000, 1(3):33-36 98.
    [13]黄卫清,徐平如,钱宇.基于事故树方法的城市灰霾的致因机理分析:以天津市为例[J].化工学报, 2018, 69(3):982-991.HUANG W Q, XU P R, QIAN Y. Causation mechanism analysis of urban haze based on FTA method:taking Tianjin as a case study[J].CIESC Jorunal, 2018, 69(3):982-991.
    [14]沈轶,陆晓峰.高温法兰连接系统的故障树分析[J].南京工业大学学报(自然科学版), 2006, 28(5):100-104.SHEN Y, LU X F. Fault tree analysis of flanged joint system at high temperature[J]. Jouranl of NanJing University of Technology(Edition of Natural Science), 2006, 28(5):100-104.
    [15]任韶然,韩波,任建峰.油藏埋存CO2泄漏机制及故障树分析[J].中国石油大学学报(自然科学版), 2017(1):96-101.REN S H, HAN B, REN J F. Mechanisms and fault tree analysis of CO2leakage during geological storage in oil reservoirs[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017(1):96-101.
    [16]电子部标准化所,全国电工电子产品可靠性与维修性标准化技术委员会.故障树分析程序:GB/T 7829—1987[S].北京:中国标准出版社, 1987.Institute of Standardization, Ministry of Electronics, National Technical Committee for Standardization of Reliability and Maintenance of Electrical and Electronic Products. Fault tree analysis procedure:GB/T 7829—1987[S]. Beijing:Standards Press of China,1987.
    [17]刘亚杰,程光旭,冯霄.催化裂化反应再生系统故障树模型及操作工艺失常状态分析[J].化学工程, 2002(4):32-38.LIU Y J, CHENG G X, FENG X. Reliability assessment of reactorregenerator system based on fault tree analysis[J]. Chemical Engineering, 2002(4):32-38.
    [18]孙兰会,成锋,陆愈实.关于事故树的结构重要度分析[J].科技通报, 2015(4):248-250.SUN L H, CHENG F, LU H S. Analysis about structural importance of fault tree[J]. Bulletin of Science and Technology, 2015(4):248-250.
    [19]刘璞生,张忠东,付满平,等.细粉粒度分布变化在FCCU催化剂跑损分析中的应用[J].炼油技术与工程, 2016, 46(7):43-46.LIU P S, ZHANG Z D, FU M P, et al. Application of particle size distribution variation of fine particles in analysis of FCCU catalyst loss[J]. Petroleum Refinery Engineering, 2016, 46(7):43-46.
    [20] WU F H, WU D F. Attrition resistances and mechanisms of three types of FCC catalysts[J]. Powder Technology, 2017, 305:289-296.
    [21] SAIDULU G, PALAPPAN K G. Optimizing conditions, modifying design improve FCC regenerator[J]. Oil&Gas Journal, 2010, 108(6):123-129.
    [22]陈冬冬,郝希仁,陈曼桥,等.催化裂化催化剂热崩跑损现象的研究[J].炼油技术与工程, 2007, 37(3):1-4.CHEN D D, HAO X R, CHEN M Q, et al. Study on the catalyst loss due to thermo-collapse in FCC unites[J]. Petroleum Refinery Engineering, 2007, 37(3):1-4.
    [23]宋健斐,王迪,孙立强,等.基于颗粒谱的FCC旋风分离器故障诊断技术的初步探索[J].石油学报(石油加工), 2017, 33(3):588-594.SONG J F, WANG D, SUN L Q, et al. Preliminary analysis of FCC cyclone fault diagnosis technology based on particles information[J].Acta Petrolei Sinica(Petroleum Processing Section), 2017, 33(3):588-594.
    [24] MCPHERSON L J. Causes of FCC reactor coke deposits identified[J].Oil&Gas Journal, 1984, 9(10):139-143.
    [25]关宏军,夏长斌,扈玉华,等.旋风分离器料腿堵塞原因分析[J].当代化工, 2004, 33(6):359-360.GUAN H J, XIA C B, HU Y H, et al. Analysis of reasons for feed leg jam of settlers and cyclone separators[J]. Contemporary Chemical Industry, 2004, 33(6):359-360.
    [26] FLETCHER R. Stepwise method determines source of FCC catalyst losses[J]. Oil&Gas Journal, 1995, 28:79-81.
    [27]滕升光.催化装置催化剂跑损诊断和处理[J].工业催化, 2015(7):555-558.TENG S G. Diagnosis and treatment of the runoff of the catalysts in catalytic cracking unit[J]. Industrial Catalysis, 2015(7):555-558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700