用户名: 密码: 验证码:
含不同粒度SiC的MgO–Al_2O_3–C材料服役状态下的侵蚀机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Degradation of MgO–Al_2O_3–C Refractories Containing SiC with Different Particle Sizes in Service State
  • 作者:李天清 ; 李楠 ; 鄢文 ; 张厚兴 ; 贺中央 ; 刘百宽
  • 英文作者:LI Tianqing;LI Nan;YAN Wen;ZHANG Houxing;HE Zhongyang;LIU Baikuan;The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology;Puyang Refractories Group Co.,Ltd;
  • 关键词:碳化硅粒度 ; 氧化镁–氧化铝–碳材料 ; 精炼钢包 ; 侵蚀机理
  • 英文关键词:particle size of silicon carbide;;magnesium oxide–alumina–carbon refractories;;refining ladle;;corrosion mechanisms
  • 中文刊名:GXYB
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:武汉科技大学省部共建耐火材料与冶金国家重点实验室;濮阳濮耐高温材料(集团)股份有限公司;
  • 出版日期:2017-11-01 14:32
  • 出版单位:硅酸盐学报
  • 年:2017
  • 期:v.45;No.345
  • 基金:国家自然科学基金(51572203);; “973”计划前期研究专项(2014CB660802)资助
  • 语种:中文;
  • 页:GXYB201712019
  • 页数:7
  • CN:12
  • ISSN:11-2310/TQ
  • 分类号:159-165
摘要
采用精炼钢包对两种含不同粒度SiC的Mg O-Al_2O_3-C(MAC)材料在包壁部位进行了115~135炉的工业试验,发现SiC粒度显著影响MAC材料的侵蚀速率,采用平均粒径D50=24.58μm的SiC粉的MAC材料的侵蚀速率为1.05 mm/炉(135炉),采用平均粒径D50=4.34μm的SiC粉的MAC材料侵蚀速率为1.30 mm/炉(115炉)。对用后MAC材料的损毁机理研究表明:2种材料中SiC都与CO(g)反应生成SiO(g),一部分SiO(g)继续与CO(g)反应生成SiO_2(s)和C(s),利用体积膨胀促进了材料结构致密化,大幅提高了抗氧化性能;而另一部分SiO(g)直接溢出MAC材料。当SiC粒度较大时,SiC与CO(g)反应较慢,减少了SiO(g)直接溢出,生成更多SiO_2(s),使得组织结构更致密,抑制了MAC材料中C的氧化,材料组成与结构保持更加完好,强度较高,具有更高的抗钢水冲刷磨损能力;SiC粒度大,在提高材料抗氧化能力的同时,也减少了材料与熔渣的接触面积,降低了MgO向熔渣的溶解速率。故在精炼钢包环境中,平均粒径D50=24.58μm的SiC比D50=4.34μm的SiC更利于提高MAC材料的抗侵蚀能力。
        Two kinds of Mg O–Al_2O_3–C(MAC) refractories containing SiC with different particle sizes were examined in the sidewall of refining ladle for 115–135 heats. The results show that the corrosion rate of the MAC refractories is remarkably affected by the particle size of SiC. The corrosion rate of the MAC refractory containing SiC with the median size(i.e., D_(50)=24.58 μm) is 1.05 mm/heat(135 heats), and that of MAC refractory containing SiC with the median size(i.e., D50=4.34 μm) is 1.30 mm/heat(115 heats). It is indicated that SiC in the two refractories reacts with CO(g) to form SiO(g), and part of SiO(g) further reacts with CO(g) to form SiO_2(s) and C(s), thus improving the oxidation resistance by densifying the structure because of the volume expansion. The reaction rate of SiC and CO(g) is slower when particle size of SiC is larger, leading to the decrease of the overflow rate of SiO(g) and the production of more SiO_2(s), which can densify the structure and inhibit the oxidation of carbon in MAC refractories. The more stable composition and structure of the material is, the higher strength and the better abrasion resistance will be. Furthermore, the larger particle size of SiC decreases the contact area between the slag and the material, and then decreases the dissolution rate of Mg O into slag. Therefore, the the MAC refractories containing SiC with the median size(i.e., D50=24.58 μm) have a higher corrosion resistance, compared to the MAC refractories containing SiC with the median size(i.e., D50=4.34 μm).
引文
[1]刘民生,马爱琼,马林.影响镁铝碳制品高温性能的因素[J].耐火材料,2002,36(3):148–150.LIU Minsheng,MA Aiqiong,MA Lin.Refractories(in Chinese),2002,36(3):148–150.
    [2]任桢,马成良,钟香崇.加入Al粉和Si粉对低碳Mg O–Al2O3–C材料性能的影响[J].耐火材料,2010,44(1):38–40.REN Zhen,MA Chengliang,ZHONG Xiangchong.Refractories(in Chinese),2010,44(1):38–40.
    [3]樊海兵,李亚伟,桑邵柏,等.刚玉含量对镁铝碳材料性能的影响[J].耐火材料,2010,44(增刊):206–209.FAN Haibing,LI Yawei,SHANG Shaobai,et al.Refractories(in Chinese),2010,44(Suppl):206–209.
    [4]王落霞,方义能,李金.Al2O3质原料种类和颗粒对镁铝碳材料性能的影响[J].耐火材料,2013,47(12):437–439.WANG Luoxia,FANG Yineng,LI Jin.Refractories(in Chinese),2013,47(12):437–439.
    [5]赵树茂,杨国晖,张玖,等.成分对Mg O–Al2O3–C耐火材料抗侵蚀性能的影响[J].东北大学学报(自然科学版),2015,36(9):1269–1272.ZHAO Shumao,YANG Guohui,ZHANG Jiu,et al.J Northeastern University:Nat Sci(in Chinese),2015,36(9):1269–1272.
    [6]ZHANG S,LEE W E.Influence of on corrosion resistance and corrode microstructure of Mg O–C refractories[J].J Eur Ceram Soc,2001,21:2393–2405.
    [7]GOKCE A S,GURCAN C,OZGEN S,et al.The effect of antioxidants on the oxidation behavior of magnesia–carbon refractory bricks[J].Ceram Int,2008,34:323–330.
    [8]曾燮榕,李贺军,杨峥.碳/碳复合材料表面Mo Si2–Si C复相陶瓷涂层及其抗氧化机制[J].硅酸盐学报,1999,27(1):8–15.ZENG Xierong,LI Hejun,YANG Zheng.J Chin Ceram Soc,1999,27(1):8–15.
    [9]闰志巧,熊翔,肖鹏,等.C/Si C复合材料表面化学气相沉积涂覆Si C涂层及其抗氧化性能[J].硅酸盐学报,2008,36(8):1098–1102,1108.YAN Zhiqiao,XIONG Xiang,XIAO Peng,et al.J Chin Ceram Soc,2008,36(8):1098–1102,1108.
    [10]陆有军,王燕民,吴澜,等.纳米碳颗粒/碳化硅陶瓷基复合材料的氧化行为[J].硅酸盐学报,2013,41(10):1431–1436.LU Youjun,WANG Yanmin,WU Lan,et al.J Chin Ceram Soc,2013,41(10):1431–1436.
    [11]连建伟,朱伯铨,李享成,等.原位生成柱状莫来石和Si C晶须对Al2O3–Si C–C耐火材料性能的影响[J].硅酸盐学报,2016,44(9):1333–1340.LIAN Jianwei,ZHU Boquan,LI Xiangcheng,et al.J Chin Ceram Soc,2016,44(9):1333–1340.
    [12]李楠,顾华志,赵惠忠.耐火材料学[M].北京:冶金工业出版社,2012:249–250.
    [13]魏耀武,李楠,陈方玉,等.Mg O–Si C–C材料的抗渣性能研究[J].耐火材料.2007,41(2):89–92.WEI Yaowu,LI Nan,CHEN Fangyu,et al.Refractories(in Chinese),2007,41(2):89–92.
    [14]曹亚平,鄢文,李楠.Si–Si C复合粉添加量对低碳镁碳材料耐火材料性能的影响[J].耐火材料,2016,50(6):170–173.CAO Yaping,YAN Wen,LI Nan.Refractories(in Chinese),2016,50(6):170–173.
    [15]JIA Quanli,ZHANG Haijun,LI Suping,et al.Effect of particle size on oxidation of silicon carbide powders[J].Ceram Int,2007,33:309–313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700