用户名: 密码: 验证码:
BH钢精炼结束到中间包过程增碳控制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contol of carbon pick-up in the bh steel from refining end to tundish process
  • 作者:董文亮 ; 季晨曦 ; 关顺宽 ; 潘宏伟 ; 邓小旋 ; 罗磊
  • 英文作者:DONG Wen-liang;JI Chen-xi;GUAN Shun-kuan;PAN Hong-wei;DENG Xiao-xuan;LUO Lei;Shougang Research Institute of Technology;Shougang Jingtang United Iron and Steel Co.,Ltd.;
  • 关键词:BH钢 ; 增碳 ; 耐火材料 ; 覆盖剂 ; 长水口
  • 英文关键词:BH steel;;carbon pick-up;;refractory;;covering flux;;long nozzle
  • 中文刊名:LANG
  • 英文刊名:Continuous Casting
  • 机构:首钢技术研究院;首钢京唐钢铁联合有限责任公司;
  • 出版日期:2017-10-15
  • 出版单位:连铸
  • 年:2017
  • 期:v.42;No.213
  • 语种:中文;
  • 页:LANG201705009
  • 页数:6
  • CN:05
  • ISSN:11-3385/TG
  • 分类号:29-34
摘要
为控制BH钢精炼结束到中间包过程的增碳量,分析了钢包内衬、中间包覆盖剂、中间包内衬等因素对BH钢钢液增碳的影响。通过分析表明,钢液的增碳量随着钢包砖衬碳质量分数的降低而下降,将包壁和包底的碳质量分数控制在0.5%以下,渣线部位的碳质量分数低于5%可以大幅度减少钢包耐材向超低碳钢液增碳效果,钢包的增碳量随着包龄的增加而降低。建立钢水覆盖剂的传热模型,将覆盖剂成分控制在高碱度低熔点区域(w_(SiO_2)≤5%,w_(CaOAl_2O_3)/w(Al_2_O3=1~1.5),wCaF_2=5%)来增大熔融层的厚度从而减小富碳层与钢液接触的概率。通过应用无碳长水口和中包工作层使用涂抹料,精炼结束到中包增碳量平均减少1.4×10~(-6)~1.5×10~(-6),增碳不超过3×10~(-6)比例由36%~44%提升至60%以上。
        The carbon pick-up effects of ladle lining,covering agent,tundish lining and continuous casting heats on the BH molten steel of were analyzed from refining end to tundish process. The results are shown that the carbon pick-up effect is suppressed significantly when the carbon in ladle liling and bottom is controlled to be under 0.5% and the carbon in slag-line is controlled to be under 5%. Based on the heat-transfer model,the composition of covering agent is controlled in the region(w_(SiO_2)≤ 5%,w_(CaO/(Al_2O_3)=1-1.5,w_(CaF_2)=5%)to avoid the contact between enriched carbon layer and molten steel by enlarging melting layer. The carbon pick-up decreased by 1.4×10~(-6)-1.5×10~(-6) and the percentage of carbon pick-up under 3×10~(-6) increased to 60% from 36%-44% by using new working layer in tundish and using the carbon-free long nozzle.
引文
[1]Okamoto A,Takahashi M,Hino T.Development of Bake-hardenable Al-killed Steel Sheet by Box-annealing Process[J].Transactions of the Iron&Steel Institute of Japan,1981,21(11):802.
    [2]Chirstine Escher,Volker Brandenburg,Ilse Heckelmann.Bake Hardening and Ageing Properties of Hot-Dip Galvanized ULCSteel Grades.Internationla Symposium on Niobium Microlaloyed Sheety Steels for Automotive Applications.2006.
    [3]赵虎,康永林,刘光明,等.超低碳烘烤硬化钢板的织构[J].钢铁研究学报,2007,19(11):47.
    [4]宋佳霖,易正明,彭其春,等.RH精炼终点-中间包浇铸过程超低碳钢水增碳的影响因素[J].特殊钢,2013,34(5):32.
    [5]邓力,彭其春,宋佳霖,等.避免原辅料对KB-150 t BOF-RH-CC流程MA超低碳钢水增碳的生产实践[J].特殊钢,2015,36(2):32.
    [6]叶仲超,王石扬.超低碳钢在大包中增碳机理[J].中国稀土学报,1998,8(2):803.
    [7]林功文,郭培民.保护渣向超低碳钢液增碳的原因及数学分析[J].钢铁研究学报,2001,13(6):15.
    [8]黄希祜.模铸保护渣性能的作用及机理[J].四川冶金,1987.
    [9]Nagata K,Susa M,Goto K.Thermal Conductivities of Slags for Ironmaking and Steelmaking[J].Tetsu-to-Hagane,1983,69:1417.
    [10]Glaser B,Du S.Thermal Conductivity Measurements of Ladle Slag Using Transient Hot Wire Method[J].Metallurgical&Materials Transactions Part B,2013,44(1):1.
    [11]庞在刚,刘柏松,陈斌.IF钢连铸增碳控制[J].连铸,2015,41(3):1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700