用户名: 密码: 验证码:
改进剑桥土蠕变模型分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Analyses of Modified Can-Clay Creep Model
  • 作者:刘泽华 ; 张宇
  • 英文作者:LIU Zehua;ZHANG Yu;University of Glasgow, School of Engineering;Geotechnical Institute, School of Civil Engineering, Dalian University of Technology;
  • 关键词:改进剑桥土 ; 蠕变 ; 黏弹塑性 ; 加载速率
  • 英文关键词:modified Cam-Clay model;;creep;;elasto-viscoplastic theory;;loading rate
  • 中文刊名:FSJS
  • 英文刊名:Journal of Water Resources and Architectural Engineering
  • 机构:格拉斯哥大学工程学院;大连理工大学土木工程学院岩土工程研究所;
  • 出版日期:2019-02-15
  • 出版单位:水利与建筑工程学报
  • 年:2019
  • 期:v.17;No.83
  • 基金:国家自然科学基金项目(50909014)
  • 语种:中文;
  • 页:FSJS201901005
  • 页数:6
  • CN:01
  • ISSN:61-1404/TV
  • 分类号:33-38
摘要
基于黏弹塑性理论,在改进剑桥模型(MCC)的基础上,引入与荷载施加速率相关系数,提出了改进剑桥蠕变模型(MCCC),该模型可以用于模拟土体参数随荷载作用时间、以及荷载加载速率的变化关系。通过对典型加载条件下土体受力状态的模拟,并与MCC模型的结果进行对比分析,结果显示MCCC模型可以描述土体的蠕变行为,合理反映土体随加载速率和时长的动态响应规律,是一种可以用于评价土体中具有时间依赖性的参数对工程地基稳定性影响的简单实用模型。
        Based on the elasto-viscoplastic theory, the modified Cam-Clay theory(MCC) was improved by introducing a coefficient to describe the loading rate. The new model was named as Modified Can-Clay Creep model(MCCC) and it could simulate the variation of soil parameters with loading time and loading rate. Both MCC model and MCCC model were used to calculate the soil response to the classic loading condition and the difference between the results calculated by these two models were compared. The simulating results showed that MCCC model could not only describe the creep phenomenon of soil, but also give a reasonable describe of soil response under different loading rate and loading duration time. The MCCC model was a simple method to assess the influence of the time dependent parameters of soil to the stability of foundation in engineering practice.
引文
[1] Roscoe K H, Burland J B. On the generalized stress-strain behaviour of wet clay[C]//Engineering Plasticity. UK: Cambridge University Press, 1968:535-609.
    [2] Wood D M. Soil Behaviour and Critical State Soil Mechanics[M]. UK: Cambridge University Press, 1990:Chapter 5.
    [3] 刘律智,杨涛,马鹏真,等.广州软土的压缩特性与修正剑桥模型参数λ和κ[J].水利与建筑工程学报,2016,14(1):45-48.
    [4] Soga K, Mitchell J. Numerical and experimental studies related to the deformation history of the Tower of Pisa[C]//Proceedings of the Symposium on Compression and Consolidation of Clayey Soils. IS-Hiroshima, 1995:757-762.
    [5] Mitchell J, Baxter C, Soga K. Time effects on the stress-deformation behavior of soils (Invited paper)[C]//Professor Sakuro Murayama Memorial Symposium, 1997:1-64.
    [6] 陈晓平,杨春和,白世伟.软基上吹填边坡蠕变特性有限元分析[J].岩石力学与工程学报,2001,20(4):514-514.
    [7] 李天竞.边坡蠕变失稳研究[J].贵州工业大学学报(自然科学版),2008,37(1):101-104.
    [8] 曲永毅.软土边坡蠕变的工程观测与分析[C]//中国土木工程学会土力学及基础工程学术会议论文选集,1983:28-33.
    [9] 何云明.边坡的蠕变机理与失稳预测研究[D].重庆:重庆大学,2005.
    [10] 刘晶辉,申力,陈雪松.软弱泥化夹层蠕变特征与边坡变形分析[J].露天采矿技术,2001(1):28-30.
    [11] 蒋磊.考虑蠕变效应的红粘土边坡稳定性分析与动态监测评价[D].长沙:中南大学,2012.
    [12] 叶自钊.基于蠕变特性土质边坡稳定性的研究[D].长沙:中南大学,2010.
    [13] 田佳.深埋软岩供水隧洞蠕变特性研究进展[J].水利与建筑工程学报,2017,15(4):182-189.
    [14] 刘身伟,王菁莪,刘清秉.黄土坡滑坡原状滑带土的蠕变与应力松弛性质[J].水利与建筑工程学报,2016,14(3):137-142.
    [15] 王承敏,程涛.RTC路径下粉质粘土平面应变三轴试验研究及剑桥模型的修正[J].湖北理工学院学报,2011,27(5):38-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700