用户名: 密码: 验证码:
盾构隧道壁后同步注双液浆配合比试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Mix Proportions of Synchronous Two-component Grouting for Shield Tunnels
  • 作者:贾毅 ; 李福海 ; 吴德宝 ; 王永宝
  • 英文作者:JIA Yi;LI Fuhai;WU Debao;WANG Yongbao;School of Civil Engineering, Southwest Jiaotong University;National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation;College of Architecture and Civil Engineering, Taiyuan University of Technology;
  • 关键词:盾构隧道 ; 同步注浆 ; 双液浆 ; 配合比 ; 凝结时间 ; 流动度 ; 泌水率 ; 弹性模量 ; 抗压强度
  • 英文关键词:Shield tunnel;;Synchronous grouting;;Two-component grout;;Mix proportion;;Setting time;;Fluidity;;Bleeding rate;;Elasticity modulus;;Compressive strength
  • 中文刊名:XDSD
  • 英文刊名:Modern Tunnelling Technology
  • 机构:西南交通大学土木工程学院;陆地交通地质灾害防治技术国家工程实验室;太原理工大学建筑与土木工程学院;
  • 出版日期:2019-04-15
  • 出版单位:现代隧道技术
  • 年:2019
  • 期:v.56;No.385
  • 基金:国家重点研发计划(2016YFB1200401);; 国家自然科学基金资助项目(51308471);; 中央高校基本科研业务专项资金(2682015ZD13)
  • 语种:中文;
  • 页:XDSD201902022
  • 页数:10
  • CN:02
  • ISSN:51-1600/U
  • 分类号:149-157+163
摘要
盾构隧道施工中盾尾同步注浆对控制地面下沉等具有重要作用。为使盾构隧道同步注双液浆具有良好的性能,文章选用水、水泥、膨润土、稳定剂及水玻璃作为原料,利用控制变量法进行试验研究,探讨了双液浆的不同配合比对凝胶时间、流动度、泌水率、弹性模量、抗压强度等指标的影响。结果表明:水灰比对双液浆的抗压强度影响较大,对泌水率的影响较小,仅考虑抗压强度时A液的最佳水灰比为2.40;当水灰比恒定时,随水玻璃含量增加,双液浆的凝胶时间逐渐增大,且1 h,1 d,7 d和28 d的抗压强度先增大后减小;当水玻璃含量恒定时,28 d双液浆试件弹性模量随水灰比的增大而逐渐减小;当水灰比恒定时,28 d双液浆试件弹性模量随水玻璃含量的增加而增大。
        Synchronous grouting plays a vital role in controlling of ground subsidence in the construction of shield tunnels. In order to improve the workability of grout for synchronous grouting, using water, cement, bentonite, stabilizer and water glass as raw materials, an experimental study was conducted by control variate method, and the effects of mix proportions of two-component grout on setting time, fluidity, bleeding rate, elasticity modulus and compressive strength were studied, with the results showing that compressive strength is much affected by water cement ratio but the bleeding rate was less affected by water cement ratio, the best water cement ratio of liquid A is 2.40 when it only considers compressive strength; when water cement ratio is constant, the setting time of two-component grout increases gradually with an increase of water glass content and the compressive strengths after 1 h, 1 d, 7 d, 28 d increase at first and then decrease; when the content of water glass is constant, the elasticity modulus of two-component grout sample decreases at first and then decreases after 28 d with an increase of water cement ratio; when the water cement ratio is constant, the elasticity modulus of two-component grout sample after 28 day increases with an increase of water glass content.
引文
[1]LAI Yongbiao,WANG Mengshu,YOU Xinhua.Predicting Model of Ground Deformation Caused by Shield Constructing[C]//Proceedings of the 3rd International Conference on Advanced Engineering Materials and Architecture Science(ICAEMAS),Huhhot,Peoples Republic China,2014.
    [2]YANG Haixing,CAO Jing,LIANG Bo,et al.Study on Synchronized Grouting Pressure to Segments of Shallow EPB Shield Tunnel[J].Advanced Research on Civil Engineering,Materials Engineering and Applied Technology,2014,859:298-303.
    [3]赵天石.泥水盾构同步注浆浆液试验及应用技术研究[D].上海:同济大学,2008.ZHAO Tianshi.Study on Mortar Material and Application of Tail Void Grouting of Slurry Shield Tunnel[D].Shanghai:Tongji University,2008.
    [4]田馄.高性能盾构隧道同步注浆材料的研究与应用[D].武汉:武汉理工大学,2007.TAIN Hun.Study and Application on High Property Grouting Material Used in Synchronous Grouting of Shield Tunnelling[D].Wuhan:Wuhan University of Technology,2007.
    [5]ZOU Jinfeng,ZUO Songqing.Similarity Solution for the Synchronous Grouting of Shield Tunnel under the Vertical Non-axisymmetric Displacement Boundary Condition[J].Advances in Applied Mathematics and Mechanics,2017,9(1):205-232.
    [6]陆兆阳.水泥-水玻璃双液浆配比试验及其特性研究[C]//中国地质学会、中国煤炭学会煤田地质专业委员会、中国煤炭工业劳动保护科学技术学会水害防治专业委员会学术年会,北京,2007.LU Zhaoyang.Experimental Study on the Properties of Cement Water Glass Slurry[C]//Academic Annual Meeting of the Geological Society,Coal Geology Specialized Committee of China Coal Society,Flooding Prevention Specialized Committee of China Coal Industry Labor Protection Science and Technology Institute,Beijing,2007.
    [7]宋天田,周顺华,徐润泽.盾构隧道盾尾同步注浆机理与注浆参数的确定[J].地下空间与工程学报,2007,4(1):130-133.SONG Tiantian,ZHOU Shunhua,XU Runze.Mechanism and Determination of Parameters of Synchronous Grouting in Shield Tunnelling[J].Chinese Journal of Underground Space and Engineering,2007,4(1):130-133.
    [8]祝龙根,白延辉,杜坚.上海地铁土压平衡盾构同步注浆浆液配比的优选[J].地下工程与隧道,1993,(4):42-49.ZHU Longgen,BAI Yanhui,DU Jian.Optimization of the Proportion of Simultaneous Grouting Slurry for EPB Shield in Shanghai Metro[J].Underground Engineering and Tunnels,1993,(4):42-49.
    [9]徐建平,林文书,许可,等.盾构隧道快硬高性能同步注浆材料研究[J].隧道建设,2014,34(2):95-100.XU Jianping,LIN Wenshu,XU Ke,et al.Study on Rapid-hardening High-performance Simultaneous Grouting Material for Shieldbored Tunnels[J].Tunnel Construction,2014,34(2):95-100.
    [10]贺雄飞.单液惰性同步注浆浆液的配合比试验研究[C]//中铁隧道集团低碳环保、优质工程修建技术专题交流会,2012.HE Xiongfei.Experimental Study on the Mix Proportion of Single Fluid Inertia Synchronous Grouting Slurry[C]//Seminar on Construction Technology of Low Carbon Environmental Protection,Quality Engineering of China Railway Tunnel Group,2012.
    [11]杨卓,陈洪光.盾构隧道同步注浆浆液配比分析及优化设计[J].隧道建设,2009,29(增2):29-32.YANG Zhuo,CHEN Hongguang.Analysis and Optimized Design of Grout Proportion for Simultaneous Grouting in Shield Tunnelling[J].Tunnel Construction,2009,29(S2):29-32.
    [12]周麟,毛文,施墨华.盾构隧道同步注浆浆液配合比优化设计[J].武汉工程大学学报,2013,35(9):29-33.ZHOU LIN,MAO Wen,SHI Mohua.Optimized Design of Grouting Mix Proportion for Synchronous Grouting in Shield Tunneling[J].Journal of Wuhan Institute of Technology,2013,35(9):29-33.
    [13]税丹薇.双液浆注浆技术[J].石家庄铁路职业技术学院学报,2008,7(增):118-123.SHUI Danwei.Double Injected Grouting Technique[J].Journal of Shijiazhuang Institute of Railway Technology,2008,7(S):118-123.
    [14]刘玉祥,柳慧鹏.水泥-水玻璃双液注浆中的最优参数选择[J].矿冶,2005,14(2):1-22.LIU Yuxiang,LIU Huipeng.Optimal Parameter Selection of Cement-Water Glass Two-Shot Grouting[J].Mining&Metallurgy,2005,14(2):1-22.
    [15]闫勇,郑秀华.水泥-水玻璃浆液性能试验研究[J].水文地质工程地质,2004,(1):71-81.YAN Yong,ZHENG Xiuhua.Experimental Study on Performance of Cement Water Glass Slurry[J].Hydrogeology and Engineering Geology,2004,(1):71-81.
    [16]张民庆,韩忠存,施宏峰.超细水泥-水玻璃双液浆的研究及应用[J].铁道工程学报,1998,(4):132-141.ZHANG Minqing,HAN Zhongcun,SHI Hongfeng.Research and Application of Superfine Cement and Sodium Silicate Mixed Grout[J].Journal of Railway Engineering Society,1998,(4):132-141.
    [17]国家建筑材料工业局.水泥胶砂强度检验方法(ISO法):GB/T 17671-1999[S].北京:中国标准出版社,1999.State Construction Material Industry Bureau.Test Method for Strength of Cement Mortar(ISO Method):GB/T 17671-1999[S].Beijing:Standards Press of China,1999.
    [18]陕西省建筑科学研究院.建筑砂浆基本性能试验方法标准:JGJ/T70-2009[S].北京:中国建筑工业出版社,2009.Shanxi Architecture Science Research Institute.Standard for Test Method of Performance on Building Mortar:JGJ/T70-2009[S].Beijing:China Arohitecture&Building Press,2009.
    [19]铁道部经济规划研究院.铁路后张法预应力混凝土梁管道压浆技术条件:TB/T 3192-2008[S].北京:中国标准出版社,2008.Economic Planning and Research Institute of Ministry of Railways.Technical Specification of Cable Grouts on Post-Prestressed Concrete Railway Girder:TB/T 3192-2008[S].Beijing:Standards Press of China,2008.
    [20]中交第一公路工程局有限公司.公路桥涵施工技术规范:JTG/T F50-2011[S].北京:人民交通出版社,2011.CCCC First Highway Engineering Company.Technical Specification for Construction of Highway Bridge and Culvert:JTG/T F50-2011[S].Beijing:China Communications Press,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700